Bài 40. Tìm các nghiệm của mỗi phương trình sau trong khoảng đã cho (khi cần tính gần đúng thì tính chính xác đến \({1 \over {10}}\) giây)
a. \(2{\sin ^2}x - 3\cos x = 2,0^\circ \le x \le 360^\circ \)
b. \(\tan x + 2\cot x = 3,180^\circ \le x \le 360^\circ \)
a.
\(\eqalign{
& 2{\sin ^2}x - 3\cos x = 2 \Leftrightarrow 2{\cos ^2}x + 3\cos x = 0 \cr
& \Leftrightarrow \cos x = 0\,\left( {\text{ loại }\,\cos x = - {3 \over 2}} \right) \cr
& \Leftrightarrow x = 90^\circ + k180^\circ ,\,k \in \mathbb Z \cr} \)
Vậy với điều kiện \(0^0≤ x ≤ 360^0\), phương trình có hai nghiệm là \(x = 90^0\) và \(x = 270^0\).
b. ĐKXĐ : \(\sin x ≠ 0\) và \(\cos x ≠ 0\). Ta có :
\(\tan x + 2\cot x = 3 \Leftrightarrow {\tan ^2}x - 3\tan x + 2 = 0 \Leftrightarrow \left[ {\matrix{{\tan x = 1} \cr {\tan x = 2} \cr} } \right.\)
+) \( \tan x = 1 ⇔ x = 45^0 + k180^0\). Có một nghiệm thỏa mãn \(180^0\le {\rm{ }}x{\rm{ }} \le {\rm{ }}360^0\), ứng với \(k = 1\) là \(x = 225^0\)
+) \( \tan x = 2 ⇔ x = α + k180^0\) với \(\tan α = 2\). Ta có thể chọn \(\alpha \approx {63^0}265,8\)
Vậy có một nghiệm (gần đúng) thỏa mãn \(180^0\le {\rm{ }}x{\rm{ }} \le {\rm{ }}360^0\) là :
\(x = \alpha + {180^0} \approx {243^0}265,8\)
Kết luận : Với điều kiện \(180^0\le {\rm{ }}x{\rm{ }} \le {\rm{ }}360^0\), phương trình có hai nghiệm \(x = 225^0\) và \(x \approx {243^0}265,8\).
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK