Câu 36 trang 42 SGK Đại số và Giải tích 11 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Bài 36. Giải các phương trình sau :

a.  \(\tan {x \over 2} = \tan x\)

b.  \(\tan \left( {2x + 10^\circ } \right) + \cot x = 0\)

c.  \(\left( {1 - \tan x} \right)\left( {1 + \sin 2x} \right) = 1 + \tan x\)

d.  \(\tan x + \tan 2x = \sin 3x\cos x\)

e.  \(\tan x + \cot 2x = 2\cot 4x\)

Hướng dẫn giải

a. ĐKXĐ:  \(\left\{ {\matrix{{\cos {x \over 2} \ne 0} \cr {\cos x \ne 0} \cr} } \right.\)

Ta có:\(\tan {x \over 2} = \tan x \Leftrightarrow x = {x \over 2} + k\pi \Leftrightarrow x = k2\pi \,\) (nhận)

b. ĐKXĐ:  \(\left\{ {\matrix{{\cos \left( {2x + 10^\circ } \right) \ne 0} \cr {\sin x \ne 0} \cr} } \right.\)

Ta có:

\(\eqalign{
& \tan \left( {2x + 10^\circ } \right) + \cot x = 0 \Leftrightarrow \tan \left( {2x + 10^\circ } \right) = \tan \left( {90^\circ + x} \right) \cr
& \Leftrightarrow 2x + 10^\circ = 90^\circ + x + k180^\circ \Leftrightarrow x = 80^\circ + k180^\circ \cr} \) 

Hiển nhiên \(x = 80^0 + k180^0\) thỏa mãn ĐKXĐ.

Vậy phương trình đã cho có các nghiệm là \(x = 80^0 + k180^0\)

c. Đặt \(t = \tan x\), với điều kiện \(\cos x ≠ 0\).

Ta có:  \(\sin 2x = {{2\tan x} \over {1 + {{\tan }^2}x}} = {{2t} \over {1 + {t^2}}}\)

Do đó :  \(1 + \sin 2x = 1 + {{2t} \over {1 + {t^2}}} = {{{{\left( {1 + t} \right)}^2}} \over {1 + {t^2}}}\)

Vậy ta có phương trình:

\(\eqalign{& \left( {1 - t} \right){{{{\left( {1 + t} \right)}^2}} \over {1 + {t^2}}} = 1 + t \cr & \Leftrightarrow \left( {1 - t} \right){\left( {1 + t} \right)^2} = \left( {1 + t} \right)\left( {1 + {t^2}} \right)\Leftrightarrow 2{t^2}\left( {1 + t} \right) = 0 \cr & \Leftrightarrow \left[ {\matrix{{t = 0} \cr {t = - 1} \cr} } \right. \Leftrightarrow \left[ {\matrix{{\tan x = 0} \cr {\tan x = - 1} \cr} } \right. \Leftrightarrow \left[ {\matrix{{x = k\pi } \cr {x = - {\pi \over 4} + k\pi } \cr} } \right. \cr} \) 

d. ĐKXĐ :\(\cos x \ne 0\,\text{ và }\,\cos 2x \ne 0.\) Với điều kiện đó, ta có :

\(\eqalign{& \tan x + \tan 2x = \sin 3x\cos x \cr & \Leftrightarrow {{\sin 3x} \over {\cos x\cos 2x}} = \sin 3x\cos x \cr & \Leftrightarrow \sin 3x\left( {{1 \over {\cos x\cos 2x}} - \cos x} \right) = 0 \cr & \Leftrightarrow \left[ {\matrix{{\sin 3x = 0} \cr {{1 \over {\cos x\cos 2x}} = \cos x} \cr} } \right. \cr & .\sin 3x = 0 \Leftrightarrow x = k{\pi \over 3} \cr & .{1 \over {\cos x\cos 2x}} = \cos x \Leftrightarrow {\cos ^2}x\cos 2x = 1 \Leftrightarrow \left( {1 + \cos 2x} \right)\cos 2x = 2 \cr & \Leftrightarrow {\cos ^2}2x + \cos 2x - 2 = 0 \cr & \Leftrightarrow \cos 2x = 1 \Leftrightarrow x = k\pi \cr} \) 

Vậy phương trình có nghiệm  \(x = k{\pi \over 3}\left( {k \in \mathbb Z} \right)\)

e. ĐKXĐ :\(\cos x \ne 0,\sin 2x \ne 0\,va\,\sin 4x \ne 0.\) Tuy nhiên chỉ cần \(\sin 4x ≠ 0\) là đủ (vì \(\sin 4x = 2\sin2x\cos2x = 4\sin x\cos x\cos2x\)). Với điều kiện đó ta có :

\(\eqalign{& \tan x + \cot 2x = 2\cot 4x \cr & \Leftrightarrow {{\sin x} \over {\cos x}} + {{\cos 2x} \over {\sin 2x}} = {{2\cos 4x} \over {\sin 4x}} \cr & \Leftrightarrow {{\sin x\sin 2x + \cos x\cos 2x} \over {\cos x\sin 2x}} = {{2\cos 4x} \over {2\sin 2x\cos 2x}} \cr & \Leftrightarrow {{\cos \left( {2x - x} \right)} \over {\cos x}} = {{\cos 4x} \over {\cos 2x}} \cr & \Leftrightarrow \cos 4x = \cos 2x \cr & \Leftrightarrow 4x = \pm 2x + k2\pi \Leftrightarrow \left[ {\matrix{{x = k\pi } \cr {x = k{\pi \over 3}} \cr} } \right. \Leftrightarrow x = k{\pi \over 3} \cr} \) 

Để là nghiệm, các giá trị này còn phải thỏa mãn điều kiện \(\sin4x ≠ 0\).

Ta có:

- Nếu \(k\) chia hết cho 3, tức là \(k = 3m\) (\(m\in\mathbb Z\)) thì :

- Nếu \(k\) không chia hết cho 3, tức là \(k = 3m ± 1\) (\(m\in\mathbb Z\))  thì :

\(\sin 4x = \sin \left( { \pm {{4\pi } \over 3} + 4m\pi } \right) = \pm \sin {\pi \over 3} = \pm {{\sqrt 3 } \over 2} \ne 0\) 

Vậy nghiệm của phương trình là \(x = k{\pi \over 3}\) với \(k\) nguyên và không chia hết cho 3.

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK