Bài 29. Giải các phương trình sau trên khoảng đã cho rồi dùng bảng số hoặc máy tính bỏ túi để tính gần đúng nghiệm của chúng (tính chính xác đến hàng phần trăm) :
a. \(3\cos 2x + 10\sin x + 1 = 0\) trên \(\left( { - {\pi \over 2};{\pi \over 2}} \right)\)
b. \(4\cos 2x + 3 = 0\) trên \(\left( {0;{\pi \over 2}} \right)\)
c. \({\cot ^2}x - 3\cot x - 10 = 0\) trên \(\left( {0;\pi } \right)\)
d. \(5 - 3\tan 3x = 0\) trên \(\left( { - {\pi \over 6};{\pi \over 6}} \right)\)
a. Ta có:
\(\eqalign{& 3\cos 2x + 10\sin x + 1 = 0 \cr & \Leftrightarrow - 6{\sin ^2}x + 6\sin x + 4 = 0 \Leftrightarrow \left[ {\matrix{{\sin x = - {1 \over 3}} \cr {\sin x = 2\,\left( {\text{ loại }} \right)} \cr} } \right. \cr} \)
Phương trình \(\sin x = - {1 \over 3}\) có nghiệm gần đúng là \(x ≈ -0,34\)
b. Ta thấy \(0 < x < {\pi \over 2} \Leftrightarrow 0 < 2\pi < \pi .\) Với điều kiện đó, ta có :
\(4\cos 2x + 3 = 0 \Leftrightarrow \cos 2x = - {3 \over 4} \Leftrightarrow 2x = \alpha \Leftrightarrow x = {\alpha \over 2},\)
trong đó \(α\) là số thực thuộc khoảng \((0 ; π)\) thỏa mãn \(\cos \alpha = - {3 \over 4}\). Dùng bảng số hoặc máy tính, ta tìm được \(α ≈ 2,42\). Từ đó nghiệm gần đúng của phương trình là \(x = {\alpha \over 2} \approx 1,21\)
c. \({\cot ^2}x - 3\cot x - 10 = 0 \Leftrightarrow \left[ {\matrix{{\cot x = 5} \cr {\cot x = - 2} \cr} } \right.\)
Nghiệm gần đúng của phương trình trong khoảng \((0; π)\) là \(x ≈ 0,2; x ≈ 2,68\)
d. \(x \in \left( { - {\pi \over 6};{\pi \over 6}} \right) \Leftrightarrow 3x \in \left( { - {\pi \over 2};{\pi \over 2}} \right).\) Với điều kiện đó, ta có :
\(5 - 3\tan 3x = 0 \Leftrightarrow \tan 3x = {5 \over 3} \Leftrightarrow 3x = \beta \Leftrightarrow x = {\beta \over 3},\)
Trong đó \(β\) là số thực thuộc khoảng \(\left( { - {\pi \over 2};{\pi \over 2}} \right)\) thỏa mãn \(\tan \beta = {5 \over 3};\) bảng số hoặc máy tính cho ta \(β ≈ 1,03\). Vậy nghiệm gần đúng của phương trình là \(x ≈ 0,34\).
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK