Cho tứ diện đều \(ABCD\) cạnh \(a\). Tính khoảng cách giữa hai cạnh đối diện của tứ diện.
Gọi \(M, N\) lần lượt là trung điểm của \(AD\) và \(BC\),
Ta có: \(\Delta BAC = \Delta BDC(c.c.c)\) \( \Rightarrow AN = DN\) (hai đường trung tuyến tương ứng)
\(\Rightarrow \Delta AND\) cân tại \(N\).
\(\Rightarrow\) Trung tuyến \(MN\) đồng thời là đường cao \(\Rightarrow MN\bot AD \,\,\, (1)\)
Chứng minh tương tự, \(\Delta MBC\) cân tại \(M \Rightarrow MN\bot BC \,\,\,\,\, (2)\)
Từ (1) và (2) suy ra \(MN\) là đường vuông góc chung của \(BC\) và \(AD\).
\( \Rightarrow d\left( {AD;BC} \right) = MN\)
Tam giác \(ABC\) đều cạnh \(a\) nên \(AN={{a\sqrt 3 } \over 2}\)
Áp dụng định lí Pytago vào tam giác vuông \(AMN\) ta có:
\(MN = \sqrt {A{N^2} - A{M^2}} = \sqrt {{{3{a^2}} \over 4} - {{{a^2}} \over 4}} = {{a\sqrt 2 } \over 2}\).
Vậy \(d\left( {AD;BC} \right) = \frac{{a\sqrt 2 }}{2}\).
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK