Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có \(AB = a, BC= b, CC' = c\).
a) Tính khoảng cách từ \(B\) đến mặt phẳng \((ACC'A')\).
b) Tính khoảng cách giữa hai đường thẳng \(BB'\) và \(AC'\).
a) Xác định và tính khoảng cách từ điểm B đến \((ACC'A')\) bằng cách kẻ \(BH \bot AC\).
Áp dụng hệ thức lượng trong tam giác vuông để tính khoảng cách vừa xác định được.
b) Xác định mặt phẳng chứa đường thẳng này và song song với đường thẳng kia. Đưa về bài toán xác định khoảng cách từ 1 điểm đến 1 mặt phẳng.
Lời giải chi tiết
a) Trong \((ABCD)\) kẻ \(BH \bot AC\,\,\left( {H \in AC} \right)\,\,\,\,\left( 1 \right)\)
Ta có: \(CC'\bot (ABCD)\Rightarrow CC'\bot BH\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\)
Từ (1) và (2) suy ra \(BH\bot (ACC'A')\).
Áp dụng hệ thức lượng trong tam giác vuông \(ABC\) ta có:
\(\frac{1}{{B{H^2}}} = \frac{1}{{A{B^2}}} + \frac{1}{{B{C^2}}} = \frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} = \frac{{{a^2} + {b^2}}}{{{a^2}{b^2}}}\)\( \Rightarrow BH = \frac{{ab}}{{\sqrt {{a^2} + {b^2}} }}\)
b) Ta có: \(AC'\subset (ACC'A') // BB'\)
\(\Rightarrow d(BB', AC') =d(BB';(ACC'A')\)\(= d(B,(ACC'A'))=BH.\)
\( \Rightarrow d\left( {BB';AC'} \right) = \frac{{ab}}{{\sqrt {{a^2} + {b^2}} }}\)
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK