Cho hai mặt phẳng \((\alpha)\), \((\beta)\) cắt nhau và một điểm \(M\) không thuộc \((\alpha)\) và không thuộc \((\beta)\). Chứng minh rằng qua điểm \(M\) có một và chỉ một mặt phẳng \((P)\) vuông góc với \((\alpha)\) và \((\beta)\). Nếu \((\alpha)\) song song với \((\beta)\) thì kết quả trên sẽ thay đổi như thế nào?
Sử dụng kết quả của định lí: Nếu hai mặt phẳng cắt nhau và cùng vuông góc với mặt phẳng thứ ba thì giao tuyến của chúng vuông góc với mặt phẳng thứ ba đó.
Lời giải chi tiết
Gọi a là giao tuyến của hai mặt phẳng \((\alpha)\) và \((\beta)\).
Ta có: \(\left\{ \begin{array}{l}\left( P \right) \bot \left( \alpha \right)\\\left( P \right) \bot \left( \beta \right)\\\left( \alpha \right) \cap \left( \beta \right) = a\end{array} \right. \Rightarrow a \bot \left( P \right)\)
Do đó mặt phẳng (P) đi qua M và vuông góc với đường thẳng a, do đó mặt phẳng (P) là duy nhất.
Nếu \((\alpha)//(\beta)\) gọi \(d\) là đường thẳng đi qua \(M\) và vuông góc với \((\alpha)\) khi đó ta có \(d\bot (\beta)\).
Như vậy mọi mặt phẳng chứa \(d\) đều vuông góc với \((\alpha)\) và \((\beta)\).
Do đó khi \((\alpha)//(\beta)\) thì có vô số mặt phẳng \((P)\) đi qua \(M\) và vuông góc với \((\alpha)\) và \((\beta)\).
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK