Bài 2 trang 113 SGK Hình học 11

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Cho hai mặt phẳng \((\alpha)\) và \((\beta)\) vuông góc với nhau. Người ta lấy trên giao tuyến \(\Delta\) của hai mặt phẳng đó hai điểm \(A\) và \(B\) sao cho \(AB=8cm\). Gọi \(C\) là một điểm trên \((\alpha)\) và \(D\) là một điểm trên \((\beta)\) sao cho \(AC\) và \(BD\) cùng vuông góc với giao tuyến \(\Delta\) và \(AC=6cm\), \(BD=24cm\). Tính độ dài đoạn \(CD\).

Hướng dẫn giải

\(\left. \matrix{(\alpha ) \bot (\beta ) \hfill \cr AC \bot \Delta \hfill \cr AC \subset (\alpha ) \hfill \cr} \right\} \Rightarrow AC \bot (\beta )\)

Do đó \(AC\bot AD\) hay tam giác \(ACD\) vuông tại \(A\)

Áp dụng định lí Pytago vào tam giác \(ACD\) ta được: \(D{C^2} = A{C^2} + A{D^2}(1)\)

Vì \(BD\bot AB \Rightarrow \Delta ABD\) vuông tại \(B\).

Áp dụng định lí Pytago vào tam giác \(ABD\) ta được: \(A{D^2} = A{B^2} + B{D^2}(2)\)

Từ (1) và (2) suy ra: \(D{C^2} = A{C^2} + A{B^2} + B{D^2} = {6^2} + {8^2} + {24^2} = 676\)

\( \Rightarrow DC = \sqrt {676}  = 26cm\)

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK