Bài 10 trang 114 SGK Hình học 11

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Cho hình chóp tứ giác đều \(S.ABCD\) có các cạnh bên và cạnh đáy đều bằng \(a\). Gọi \(O\) là tâm của hình vuông \( ABCD\).

a) Tính độ dài đoạn thẳng \(SO\).

b) Gọi \(M\) là trung điểm của đoạn \(SC\). Chứng minh hai mặt phẳng \((MBD)\) và \((SAC)\) vuông góc với nhau.

c) Tính độ dài đoạn \(OM\) và tính góc giữa hai mặt phẳng \((MBD)\) và \((ABCD)\).

Hướng dẫn giải

a) Hình chóp tứ giác đều nên \(SO\bot (ABCD)\). Do đó \(SO\bot AC\)

Xét tam giác \(SOA\) vuông tại \(O\):

\(SO = \sqrt{SA^{2}-AO^{2}}=\frac{a\sqrt{2}}{2}.\)

b) \(BD\bot AC\) , \(BD\bot SO\) nên \(BD \bot (SAC)\),

Mà \(BD ⊂ (MBD)\) do đó \((MBD) ⊥ (SAC)\).

c) \(OM =\frac{SC}{2}=\frac{a}{2}\) (trung tuyến ứng với  cạnh huyền của tam giác vuông thì bằng nửa cạnh ấy). 

\( \Delta SDC = \Delta SBC(c.c.c)\) suy ra \(DM=BM\) suy ra tam giác \(BDM\) cân tại \(M\)

\(OM\) vừa là trung tuyến đồng thời là đường cao nên \(OM\bot BD\)

\(\left. \matrix{
(MBD) \cap (ABCD) = BD \hfill \cr
OM \bot BD \hfill \cr
OC \bot BD \hfill \cr} \right\} \Rightarrow \) góc giữa hai mặt phẳng \((MBD)\) và \((ABCD)\) là \(\widehat {MOC}\)

Ta có \(OM=\frac{SC}{2}=\frac{a}{2}\) hay \(OM=MC\) Tam giác \(OMC\) vuông cân tại \(M\) 

\((\widehat{(MBD);(ABCD)})=(\widehat{MOC})=45^{0}.\)

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK