Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là một hình thoi tâm \(I\) cạnh \(a\) và có góc \(A\) bằng \(60^{0},\) cạnh \(SC=\frac{a\sqrt{6}}{2}\) và \(SC\) vuông góc với mặt phẳng \((ABCD)\).
a) Chứng minh mặt phẳng \((SBD)\) vuông góc với mặt phẳng \((SAC)\).
b) Trong tam giác \(SCA\) kẻ \(IK\) vuông góc với \(SA\) tại \(K\). Hãy tính độ dài \(IK\)
c) Chứng minh \(\widehat{BKD}=90^{0}\) và từ đó suy ra mặt phẳng \((SAB)\) vuông góc với mặt phẳng \((SAD)\).
a) Chứng minh mặt phẳng này chứa một đường thẳng vuông góc với mặt phẳng kia.
b) Chứng minh tam giác \(SCA\) và \(IKA\) đồng dạng, từ đó suy ra tỉ số các cạnh và tính \(IK\).
c) Chứng minh tam giác \(BKD\) có đường trung tuyến ứng với một cạnh bằng nửa cạnh ấy.
Xác định góc giữa hai mặt phẳng \((SAB)\) và \((SAD)\) và chứng minh góc đó bằng \(90^0\).
Lời giải chi tiết
a) \(SC \bot \left( {ABCD} \right) \Rightarrow SC \bot BD\,\,\,\,\,\,\,\,\,\left( 1 \right)\)
\(ABCD\) là hình thoi nên \(AC\bot BD\,\,\,\,\,\left( 2 \right)\)
Từ (1) và (2) suy ra \(BD ⊥ (SAC)\).
Mà \(BD\subset (SBD)\Rightarrow (SBD) ⊥ (SAC)\).
b) Xét tam giác vuông \(ABI\) có: \(AI=AB.\cos 30^0={{a\sqrt 3 } \over 2}\Rightarrow AC = 2AI = a\sqrt 3 \)
Xét tam giác vuông \(SAC\) có: \(SA=\sqrt {A{C^2} + S{C^2}} = \sqrt {3{a^2} + {{6{a^2}} \over 4}} =\frac{3a}{\sqrt{2}}.\)
Dễ dàng chứng minh đươc \(\Delta SCA \sim \Delta IKA\,\,\left( {g.g} \right)\)
\(\Rightarrow \frac{IK}{SC}=\frac{AI}{AS}\Rightarrow IK=\frac{AI.SC}{AS}=\frac{a}{2}.\)
c) Dễ thấy \(\Delta ABD\) đều nên \(BD = a \Rightarrow IK = \frac{1}{2}BD\) nên \(\Delta BKD\) vuông tại \(K\). Vậy \(\widehat{BKD}=90^{0}.\)
Ta có: \(BD \bot \left( {SAC} \right)\,\,\left( {cmt} \right) \Rightarrow BD \bot SA\)
\(\left\{ \begin{array}{l}BD \bot SA\\IK \bot SA\end{array} \right. \Rightarrow SA \bot \left( {BKD} \right) \Rightarrow \left\{ \begin{array}{l}SA \bot BK\\SA \bot DK\end{array} \right.\)
Ta có:
\(\begin{array}{l}
\left\{ \begin{array}{l}
BD \bot SA\\
IK \bot SA
\end{array} \right. \Rightarrow SA \bot \left( {BKD} \right) \\ \Rightarrow \left\{ \begin{array}{l}
\left( {SAB} \right) \cap \left( {SAD} \right) = SA\\
\left( {SAB} \right) \supset BK \bot SA\\
\left( {SAD} \right) \supset DK \bot SA
\end{array} \right.\\
\Rightarrow \widehat {\left( {\left( {SAB} \right);\left( {SAD} \right)} \right)} = \widehat {\left( {BK;DK} \right)} = \widehat {BKD} = {90^0}\\
\Rightarrow \left( {SAB} \right) \bot \left( {SAD} \right)
\end{array}\)
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK