Trên mặt phẳng \(Oxy\) cho điểm \(A(-2; 1)\). Gọi \(B\) là điểm đối xứng với điểm \(A\) qua gốc tọa độ \(O\). Tìm tọa độ của điểm \(C\) có tung độ bằng \(2\) sao cho tam giác \(ABC\) vuông ở \(C\).
+) \(B\) là điểm đối xứng với \(A(a; \, b)\) qua gốc tọa độ \( \Rightarrow B\left( { - a; - b} \right).\)
+) Tam giác \(ABC\) vuông tại \( C \Leftrightarrow \overrightarrow {CA} \bot \overrightarrow {CB} \Leftrightarrow \overrightarrow {CA} .\overrightarrow {CB} = 0. \)
Lời giải chi tiết
Điểm \(B\) đối xứng với \(A\) qua gốc tọa độ nên tọa độ của \(B\) là \((2; -1)\)
Tọa độ của \(C\) là \((x; 2)\). Ta có: \(\vec{CA} = (-2 - x; -1)\)
\(\vec{CB} = (2 - x; -3)\)
Tam giác \(ABC\) vuông tại \(C\) \(\Rightarrow\vec{CA} ⊥ \vec{CB}\Rightarrow \vec{CA}.\vec{CB} = 0\)
\(\Rightarrow(-2 - x)(2 - x) + (-1)(-3) = 0\)
\(\Rightarrow -4 +x^2+ 3 = 0\)
\(\Rightarrow x^2= 1 \Rightarrow x= 1\) hoặc \(x= -1\)
Ta tìm được hai điểm \(C_1(1; 2); C_2(-1; 2)\) thỏa mãn yêu cầu bài toán.
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 10 - Năm thứ nhất ở cấp trung học phổ thông, năm đầu tiên nên có nhiều bạn bè mới đến từ những nơi xa hơn vì ngôi trường mới lại mỗi lúc lại xa nhà mình hơn. Được biết bên ngoài kia là một thế giới mới to và nhiều điều thú vị, một trang mới đang chò đợi chúng ta.
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK