Một hình chữ nhật \(ABCD\) có \(AB > AD\), diện tích và chu vi của nó theo thứ tự là \(2a^2\) và \(6a\). Cho hình vẽ quay xung quanh cạnh \(AB\), ta được một hình trụ.
Tính diện tích xung quanh và thể tích của hình trụ này.
+) Quay hình chữ nhật quanh một cạnh cố định của nó ta được một hình trụ.
+) Chu vi hình chữ nhật có kích thước \(a, \, b\) là: \(C=2(a+b).\)
+) Diện tích hình chữ nhật có kích thước \(a, \, b\) là: \(S=ab.\)
+) Diện tích xung quanh của hình trụ: \(S_{xq}=2\pi rh.\)
+) Diện tích toàn phần của hình trụ: \(S_{tp}=2 \pi rh +2 \pi r^2.\)
+) Thể tích hình trụ là: \(V=\pi r^2h.\)
Lời giải chi tiết
Theo đề bài ta có:
Diện tích hình chữ nhật \(ABCD\) là: \(AB.AD = 2a^2\) (1)
Chu vi hình chữ nhật là: \(2(AB + CD) = 6a ⇒ AB + CD = 3a\) (2)
Từ (1) và (2), ta có \(AB\) và \(CD\) là nghiệm của phương trình:
\({x^2}-{\rm{ }}3ax{\rm{ }}-{\rm{ }}2{a^2} = {\rm{ }}0\)
Giải phương trình ta được: \({x_1} = {\rm{ }}2a;{\rm{ }}{x_2} = {\rm{ }}a\)
Theo giả thiết \(AB > AD\) nên ta chọn \(AB = 2a; AD = a\)
Khi quay hình chữ nhật quanh \(AB\) ta được hình trụ có \(h=AB=2a\) và \(r=AD=a.\)
Vậy diện tích xung quanh hình trụ là:
\({S_{xq}} = 2\pi .AD.AB = 2\pi .a.2a = 4{\rm{ }}\pi {a^2}\)
Thể tích hình trụ là:
\(V{\rm{ }} = {\rm{ }}\pi {\rm{ }}.{\rm{ }}A{D^2}.{\rm{ }}AB{\rm{ }} = {\rm{ }}\pi .{\rm{ }}{a^2}.{\rm{ }}2a{\rm{ }} = {\rm{ }}2\pi {a^3}\)
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 9 - Là năm cuối ở cấp trung học cơ sở, sắp phải bước vào một kì thi căng thẳng và sắp chia tay bạn bè, thầy cô và cả kì vọng của phụ huynh ngày càng lớn mang tên "Lên cấp 3". Thật là áp lực nhưng các em hãy cứ tự tin vào bản thân là sẻ vượt qua nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK