Bài 1: Cho hai hàm số : \(y = {x^2}\) và \(y = 2x – 1.\)
a) Vẽ đồ thị (P) và (d) của hai hàm số trên cùng một hệ trục tọa độ.
b) Tìm tọa độ giao điểm của (P) và (d) ( nếu có).
Bài 2: Cho hàm số \(y = f\left( x \right) = \left( {{m^2} - 2m + 3} \right){x^2}\). Chứng tỏ hàm số đồng biến khi \(x > 0\), từ đó hãy so sánh \(f\left( {\sqrt 2 } \right)\) và \(f\left( {\sqrt 5 } \right).\)
Bài 1: a) Bảng giá trị \(( y = x^2)\)
x
− 2
− 1
0
1
2
y
4
1
0
1
4
x
− 2
− 1
0
1
2
y
4
1
0
1
4
Đồ thị của hàm số là một parabol (P).
x
0
1
y
− 1
1
x
0
1
y
− 1
1
Đồ thị của hàm số là đường thẳng (d) qua hai điểm \(( 0; − 1), (1; 1).\)
b) Phương trình hoành độ giao điểm của (P) và (d) :
\({x^2} = 2x - 1 \Leftrightarrow {x^2} - 2x + 1 = 0 \)
\(\Leftrightarrow {\left( {x - 1} \right)^2} = 0 \Leftrightarrow x = 1\)
Vậy tọa độ giao điểm của (P) và (d) là \(M(1; 1).\)
Bài 2: Ta có : \({m^2} - 2m + 3 = {m^2} - 2m + 1 + 2\)\(\;={\left( {m - 1} \right)^2} + 2 > 0\), với mọi m ( vì \(( m – 1)^2≥ 0)\)
Vậy hệ số \(a > 0\), với mọi m nên hàm số đã cho đồng biến khi \(x > 0.\)
Ta có : \(0 < \sqrt 2 < \sqrt 5 \Rightarrow f\left( {\sqrt 2 } \right) < f\left( {\sqrt 5 } \right).\)
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 9 - Là năm cuối ở cấp trung học cơ sở, sắp phải bước vào một kì thi căng thẳng và sắp chia tay bạn bè, thầy cô và cả kì vọng của phụ huynh ngày càng lớn mang tên "Lên cấp 3". Thật là áp lực nhưng các em hãy cứ tự tin vào bản thân là sẻ vượt qua nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK