Bài 1: Cho hàm số \(y = f\left( x \right) = {x^2}.\)
a) Vẽ đồ thị của hàm số.
b) Tìm giá trị lớn nhất, nhỏ nhất của hàm số khi x thỏa mãn \(0 \le x \le 2.\)
Bài 2: Tìm giá trị của m, biết rằng hàm số \(y = \left( {1 - m} \right){x^2}\) đồng biến khi \(x > 0.\)
Bài 3: Cho hàm số \(y = \left( {m - 1} \right){x^2}\). Tìm giá trị của m biết đồ thị (P) của hàm số đi qua điểm \(A(2; − 4).\)
Bài 1: a) Bảng giá trị :
x
− 2
− 1
0
1
2
y
4
1
0
1
4
x
− 2
− 1
0
1
2
y
4
1
0
1
4
Đồ thị của hàm số là một parabol có đỉnh là O và nhận trục Oy làm trục đối xứng.
b) Ta có \(a = 1 > 0\) nên hàm số đồng biến khi \(x > 0.\)
Vậy \(0 \le x \le 2 \Rightarrow f\left( 0 \right) \le f\left( x \right) \le f\left( 2 \right)\)\(\; \Rightarrow 0 \le {x^2} \le 4.\)
Vậy giá trị nhỏ nhất của hàm số bằng 0, khi \(x = 0\); giá trị lớn nhất của hàm số bằng 4, khi \(x = 2.\)
Bài 2: Hàm số đồng biến khi \(x > 0 \Leftrightarrow 1 – m > 0 \Leftrightarrow m < 1.\)
Bài 3: Ta có \(A \in (P) \Rightarrow - 4 = \left( {m - 1} \right){.2^2} \)
\(\;\Rightarrow m - 1 = - 1 \Rightarrow m = 0.\)
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 9 - Là năm cuối ở cấp trung học cơ sở, sắp phải bước vào một kì thi căng thẳng và sắp chia tay bạn bè, thầy cô và cả kì vọng của phụ huynh ngày càng lớn mang tên "Lên cấp 3". Thật là áp lực nhưng các em hãy cứ tự tin vào bản thân là sẻ vượt qua nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK