Nếu hai vòi nước cùng chảy vào một bể cạn (không có nước) thì bể sẽ đầy trong \(1\) giờ \(20\) phút. Nếu mở vòi thứ nhất trong \(10\) phút và vòi thứ hai trong \(12\) phút thì chỉ được \(\dfrac{2}{15}\) bể nước. Hỏi nếu mở riêng từng vòi thì thời gian để mỗi vòi chảy đầy bể là bao nhiêu ?
B1: Chọn ẩn, đặt điều kiện thích hợp.
Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết.
Lập hệ phương trình biểu thị sự tương quan giữa các đại lượng.
B2: Giải hệ phương trình.
B3: Kiểm tra trong các nghiệm tìm được nghiệm nào thỏa mãn điều kiện, nghiệm nào không thỏa mãn, rồi trả lời
Lời giải chi tiết
Gọi thời gian vòi thứ nhất chảy đầy bể là: \(x\) phút, vòi thứ hai chảy một mình đầy bể là: \(y\) phút. (Điều kiện\(x > 0, y > 0\) ).
Trong \(1\) phút vòi thứ nhất chảy được \(\dfrac{1}{x}\) bể, vòi thứ hai chảy được \(\dfrac{1}{y}\) bể.
Nên trong \(1\) phút cả hai vòi chảy được \(\dfrac{1}{x} +\dfrac{1}{y}\) (bể).
Theo đề bài, cả hai vòi cùng chảy thì sau \(1\) giờ \(20\) phút = \(80\) phút thì đầy bể nên trong \(1\) phút cả hai vòi chảy được: \(\dfrac{1}{80}\) (bể).
Do đó ta có phương trình: \(\dfrac{1}{x} +\dfrac{1}{y}=\dfrac{1}{80}\)
Trong \(10\) phút vòi thứ nhất chảy được \(10.\dfrac{1}{x}\) bể, trong \(12\) phút vòi thứ hai chảy được \(12. \dfrac{1}{y}\) bể thì được \(\dfrac{2}{15}\) bể, ta được:
\(10. \dfrac{1}{x} + 12. \dfrac{1}{y} = \dfrac{2}{15}\)
Ta có hệ phương trình:
\(\left\{\begin{matrix} \dfrac{1}{x}+ \dfrac{1}{y} = \dfrac{1}{80}& & \\ 10. \dfrac{1}{x} + 12. \dfrac{1}{y} = \dfrac{2}{15} & & \end{matrix}\right.\)
Đặt \(\left\{\begin{matrix}\dfrac{1}{x} =a & & \\ \dfrac{1}{y}=b & & \end{matrix}\right.\) ; (\(a,\ b \ne 0\) )
Hệ đã cho trở thành:
\(\left\{\begin{matrix} a+ b = \dfrac{1}{80}& & \\ 10. a + 12. b = \dfrac{2}{15} & & \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} 10a+ 10b = \dfrac{10}{80}& & \\ 10a + 12 b = \dfrac{2}{15} & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 10a+ 10b = \dfrac{1}{8}& & \\ 10a + 12 b = \dfrac{2}{15} & & \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} 2b = \dfrac{1}{120}& & \\ 10a + 12 b = \dfrac{2}{15} & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} b = \dfrac{1}{140}& & \\ 10a = \dfrac{2}{15}-12b & & \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} b = \dfrac{1}{240}& & \\ 10a = \dfrac{2}{15}-12.\dfrac{1}{240} & & \end{matrix}\right. \)
\(\Leftrightarrow \left\{\begin{matrix} b = \dfrac{1}{240}& & \\ a = \dfrac{1}{120} & & \end{matrix} (thỏa\ mãn)\right.\)
Suy ra \(\left\{\begin{matrix}\dfrac{1}{x} = \dfrac{1}{120} & & \\ \dfrac{1}{y}=\dfrac{1}{240} & & \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}x = \dfrac{1}120 & & \\ y=240 & & \end{matrix}\right.\)
Vậy nếu chảy một mình để đầy bể vòi thứ nhất chảy trong \(120\) phút (2 giờ), vòi thứ hai \(240\) phút (4 giờ).
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 9 - Là năm cuối ở cấp trung học cơ sở, sắp phải bước vào một kì thi căng thẳng và sắp chia tay bạn bè, thầy cô và cả kì vọng của phụ huynh ngày càng lớn mang tên "Lên cấp 3". Thật là áp lực nhưng các em hãy cứ tự tin vào bản thân là sẻ vượt qua nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK