a. Chứng minh rằng (O) và (O’) tiếp xúc nhau tại A.
b. Gọi I là trung điểm của BC. Chứng minh rằng : \(\widehat {OIO'} = 90^\circ \) và \(AI ⊥ OO’\).
c. Tính các cạnh của ∆ABC biết bán kính của hai đường tròn là R và R’.
a. (O) và (O’) tiếp xúc với BC tại B và C nên \(OB ⊥ BC\) và \(O’C ⊥ BC\)
hay \({\widehat B_1} + {\widehat B_2} + {\widehat C_1} + {\widehat C_2} = 180^\circ ,\)
mà \({\widehat B_2} + {\widehat C_2} = 90^\circ \) (do ∆ABC vuông tại A) \( \Rightarrow {\widehat B_1} + {\widehat C_1} = 90^\circ \)
∆BOA và ∆CO’A cân tại O và O’ nên.
\(\eqalign{ & {\widehat B_1} = {\widehat A_1},{\widehat C_1} = {\widehat A_2} \cr & \Rightarrow {\widehat A_1} + {\widehat A_2} = 90^\circ \cr} \)
Do đó \({\widehat A_1} + \widehat {BAC} + {\widehat A_2} = 180^\circ \)
Vậy ba điểm O, A, O’ thẳng hàng.
Mặt khác : \(OO’ = OA + AO’\)
nên (O) và (O’) tiếp xúc nhau tại A.
b. I là trung điểm của BC (gt) nên AI là trung tuyến của ∆ABC vuông tại A \(⇒ IA = IB = IC.\)
Do đó \(∆IAO = ∆IBO\) (c.c.c) \( \Rightarrow \widehat {IAO} = \widehat {IBO} = 90^\circ \)
⇒ AI là tiếp tuyến của (O) và (O’). Do đó IO và IO’ là phân giác của các góc kề bù AIB và AIC \( \Rightarrow \widehat {OIO'} = 90^\circ \)
Cách khác : Ta có: \(IA = IB, OA = OB ⇒ OI\) là trung trực của AB
\(⇒ OI ⊥ AB\) hay \(\widehat {AHI} = 90^\circ \) (H là giao điểm của OI và AB).
Chứng minh tương tự có \(\widehat {AKI} = 90^\circ \) (K là giao điểm của O’I và AC) nên AHIK là hình chữ nhật \( \Rightarrow \widehat {OIO'} = 90^\circ \)
c. ∆OIO’ vuông có AI là đường cao ta có:
\(A{I^2} = AO.AO' \Rightarrow AI = \sqrt {R.R'} \). Do đó: \(BC = 2\sqrt {R.R'} \)
Gọi H là giao điểm của OI và AB. ∆OAI vuông tại A (cmt) có AH là đường cao, ta có:
\({1 \over {A{H^2}}} = {1 \over {A{O^2}}} + {1 \over {A{I^2}}}\) (định lí 4)
hay
\(\eqalign{ & {1 \over {A{H^2}}} = {1 \over {{R^2}}} + {1 \over {{{\left( {\sqrt {R.R'} } \right)}^2}}} \cr&\;\;\;\;\;\;\;\;\;\;= {1 \over {{R^2}}} + {1 \over {R.R'}} = {{R' + R} \over {{R^2}R'}} \cr & \Rightarrow AH = R\sqrt {{{R'} \over {R + R'}}} \cr& \Rightarrow AB = 2AH = 2R\sqrt {{{R'} \over {R + R'}}} \cr} \)
Tương tự \(AC = 2R'\sqrt {{R \over {R + R'}}} \)
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 9 - Là năm cuối ở cấp trung học cơ sở, sắp phải bước vào một kì thi căng thẳng và sắp chia tay bạn bè, thầy cô và cả kì vọng của phụ huynh ngày càng lớn mang tên "Lên cấp 3". Thật là áp lực nhưng các em hãy cứ tự tin vào bản thân là sẻ vượt qua nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK