a. Chứng minh rằng AO là đường trung trực của đoạn BC. Tính AB theo R.
b. Gọi I là trung điểm của đoạn OB, K là giao điểm của đoạn OA với đường tròn (O). Tính diện tích ∆OIK theo R.
c. Đường thẳng AI cắt cung lớn BC tại M. Tiếp tuyến tại M của đường tròn (O) cắt các đường thẳng AB, AC lần lượt tại P và Q. Chứng minh: \(MP = p – AQ\) (với p là nửa chu vi ∆APQ)
d. Chứng minh rằng diện tích ∆APQ bằng nửa chu vi của ∆APQ nhân với R.
a. Ta có: \(AB = AC\) (tính chất hai tiếp tuyến cắt nhau)
\(OB = OC (= R).\)
Do đó AO là đường trung trực của đoạn BC.
Ta có: \(AB ⊥ OB\) (tính chất tiếp tuyến)
\(⇒ ∆ABO\) vuông tại B, theo định lí Pi-ta-go, ta có:
\(AB = \sqrt {A{O^2} - B{O^2}} = \sqrt {{{\left( {2R} \right)}^2} - {R^2}} \)\(\,= R\sqrt 3 \)
b. Ta có: IK là đường trung bình của ∆AOB nên:
\(IK = {1 \over 2}AB = {{R\sqrt 3 } \over 2}\) và IK // AB, mà \(AB ⊥ OB ⇒ IK ⊥ OB.\)
Ta có: \({S_{OIK}} = {1 \over 2}IK.IO = {1 \over 2}.{{R\sqrt 3 } \over 2}.{R \over 2} = {{{R^2}\sqrt 3 } \over 8}\) (đvdt)
c. Ta có:
\(\eqalign{ p - AQ &= {{AP + PQ + AQ} \over 2} - AQ\cr& = {{AP + PQ + AQ - 2AQ} \over 2} \cr & = {{AP + PQ - AQ} \over 2} \cr&= {{AB + BP + PM + MQ - CQ - AC} \over 2} \cr & = {{BP + PM} \over 2} = {{2PM} \over 2} \cr&= PM\,\left( {đpcm} \right) \cr} \)
d. Ta có:
\(\eqalign{ & {S_{APQ}} = {S_{AOQ}} + {S_{QOP}} + {S_{POA}} \cr & = {1 \over 2}R.AQ + {1 \over 2}R.QP + {1 \over 2}R.AP \cr&= {1 \over 2}R\left( {AQ + QP + AP} \right) \cr} \)
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 9 - Là năm cuối ở cấp trung học cơ sở, sắp phải bước vào một kì thi căng thẳng và sắp chia tay bạn bè, thầy cô và cả kì vọng của phụ huynh ngày càng lớn mang tên "Lên cấp 3". Thật là áp lực nhưng các em hãy cứ tự tin vào bản thân là sẻ vượt qua nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK