Bài 1. Cho đường tròn đường kính AB. Kẻ dây CD vuông góc với AB tại điểm I bất kì trên AB. Nối I với trung điểm M của AD. Chứng minh MI vuông góc với BC.
Bài 2. Cho đường tròn (O) đường kính AB. Điểm C nằm giữa A và O. Vẽ đường tròn (O’) có đường kính là CB.
a. Hai đường tròn (O) và (O’) có vị trí tương đối như thế nào ?
b. Kẻ dây DE vuông góc với AC tại trung điểm H của AC. Chứng minh rằng tứ giác ADCE là hình thoi.
c. Gọi K là giao điểm của BD với đường tròn (O’). Chứng minh rằng ba điểm E, C, K thẳng hàng.
d. Chứng minh rằng HK là tiếp tuyến của đường tròn (O’)
Bài 1.
Ta có: \(CD ⊥ AB\) tại I \(⇒ IC = ID\) (định lí đường kính dây cung).
Lại có M là trung điểm của AD (gt) nên IM là đường trung bình của ∆ACD
\(⇒ IM // AC\) (1)
Mà \(\widehat {ACB} = 90^\circ \) (AB là đường kính)
hay \(AC ⊥ BC\) (2)
Từ (1) và (2) ta có: \(MI ⊥ BC\)
Bài 2.
a. Ta có: \(OO’ = OB – O’B\) (\(d = R – R’\)) \(⇒ (O)\) và \((O’)\) tiếp xúc trong tại B.
b. Ta có: \(DE ⊥ AC\) tại trung điểm H
\(⇒ HD = HE\) (định lí đường kính dây cung)
Do đó tứ giác ADCE là hình thoi.
c. Ta có: \(\widehat {ADB} = 90^\circ \) (AB là đường kính)
hay \(AD ⊥ BD\), mà EC // AD
\(⇒ EC ⊥ BD\) (1)
Lại có \(\widehat {CKB} = 90^\circ \) (CB là đường kính)
hay \(CK ⊥ BD\) (2)
Từ (1) và (2) \(⇒ EC\) và \(KC\) phải trùng nhau.
Vậy ba điểm E, C, K thẳng hàng.
d. Ta có: \(∆BO’K\) cân tại O’ (\(O’B = O’K = R’\)) \( \Rightarrow {\widehat B_1} = {\widehat K_1}\,\left( 3 \right)\)
\(∆EKD\) vuông có HK là đường trung tuyến nên \(HK = HE = {1 \over 2}ED\)
\(⇒ ∆EHK\) cân \( \Rightarrow {\widehat E_1} = {\widehat K_3}\,\left( 4 \right),\,ma\,{\widehat E_1} = {\widehat B_1}\,\left( 5 \right)\) (cùng phụ với \(\widehat {EDB}\) )
Từ (3), (4) và (5) \( \Rightarrow {\widehat K_1} = {\widehat K_3},\) mà \({\widehat K_2} + {\widehat K_1} = 90^\circ \Rightarrow {\widehat K_3} + {\widehat K_2} = 90^\circ \)
hay \(HK ⊥ O’K\). Chứng tỏ HK là tiếp tuyến của (O’)
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 9 - Là năm cuối ở cấp trung học cơ sở, sắp phải bước vào một kì thi căng thẳng và sắp chia tay bạn bè, thầy cô và cả kì vọng của phụ huynh ngày càng lớn mang tên "Lên cấp 3". Thật là áp lực nhưng các em hãy cứ tự tin vào bản thân là sẻ vượt qua nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK