Cho tam giác đều \(ABC\) ngoại tiếp đường tròn bán kính \(1cm\). Diện tích của tam giác \(ABC\) bằng:
(A) \(6cm^{2}\);
(B) \(\sqrt{3}cm^{2}\);
(C) \(\dfrac{3\sqrt{3}}{4}cm^{2}\)
(D) \(3\sqrt{3}cm^{2}.\)
Hãy chọn câu trả lời đúng.
+) Sử dụng tính chất: Trong tam giác đều, đường cao đồng thời là đường trung tuyến.
+) Sử dụng hệ thức giữa cạnh và góc trong tam giác vuông: \(\Delta{ABC}\) vuông tại \(A\). Khi đó: \(AB=BC. \sin C;\ AC=BC. \sin B\).
+) Công thức tính diện tích tam giác: \(S=\dfrac{1}{2}.h.a\)
trong đó \(h\) là độ dài đường cao, \(a\) là độ dài cạnh ứng với đường cao.
Lời giải chi tiết
Gọi \((O)\) là đường tròn nội tiếp tam giác đều \(ABC\). Khi đó \(OH=1\) là bán kính của \((O)\)
Trong tam giác đều, đường cao cũng là đường trung tuyến. Theo tính chất đường trung tuyến, ta có:
\(OH=\dfrac{1}{3}CH \Rightarrow CH=3.OH=3.1=3.\)
Vì tam giác \(ABC\) đều nên \(\widehat{B}=60^o\).
Xét tam giác \(CHB\), vuông tại \(H\), \(\widehat{B}=60^o,\ CH=3\). Áp dụng hệ thức giữa cạnh và góc trong tam giác vuông, ta có:
\(CH=CB. \sin B \Rightarrow CB=\dfrac{CH}{\sin B}=\dfrac{3}{\sin 60^o}=2\sqrt 3\)
Suy ra \(AB=AC=BC=2\sqrt{3}(cm).\)
Do đó diện tích tam giác \(ABC\) là
\(S=\dfrac{1}{2}CH.AB=\dfrac{1}{2}.3. 2\sqrt{3}=3\sqrt{3}(cm^{2}).\)
Ta chọn (D).
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 9 - Là năm cuối ở cấp trung học cơ sở, sắp phải bước vào một kì thi căng thẳng và sắp chia tay bạn bè, thầy cô và cả kì vọng của phụ huynh ngày càng lớn mang tên "Lên cấp 3". Thật là áp lực nhưng các em hãy cứ tự tin vào bản thân là sẻ vượt qua nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK