Bài 1. Cho hàm số \(y = ax + b \;(a ≠ 0)\)
Tìm a, b biết rằng đồ thị của hàm số là đường thẳng song song với đường thẳng \(y = \sqrt 3 x\) và qua điểm \(A(1; 2)\).
Bài 2. Tìm \(m\) để đồ thị của hàm số \(y = (2m – 1)x – m\) cắt trục hoành tại điểm có hoành độ bằng \(1\).
Bài 3. Vẽ đồ thị hàm số \(y = \sqrt 2 x + 2\)
Điểm \(M\left( {1 - \sqrt 2 ;\sqrt 2 - 1} \right)\) có thuộc đồ thị hay không? Tại sao?
Bài 1. Từ giả thiết, ta có \(a = \sqrt 3 \)
Khi đó phương trình đường thẳng có dạng : \(y = \sqrt 3 x + b\,\left( d \right)\)
\(A \in \left( d \right) \Rightarrow 2 = \sqrt 3 .1 + b \)\(\;\Rightarrow b = 2 - \sqrt 3 \)
Vậy \(a = \sqrt 3 ;b = 2 - \sqrt 3 \)
Bài 2. Tọa độ của điểm A trên trục hoành có hoành độ bằng 1 là \(A(1; 0)\). Điểm A thuộc đồ thị nên :\(0 = \left( {2m - 1} \right).1 - m \Rightarrow m = 1\)
Bài 3. Bảng giá trị:
x
0
\( - \sqrt 2 \)
y
2
0
x
0
\( - \sqrt 2 \)
y
2
0
Đồ thị của hàm số là đường thẳng đi qua hai điểm \(A(0; 2)\) và \(B\left( { - \sqrt 2 ;0} \right)\)
Thế tọa độ \(M\left( {1 - \sqrt 2 ;\sqrt 2 - 1} \right)\) vào phương trình \(y = \sqrt 2 x + 2,\) ta có:
\(\eqalign{ & \sqrt 2 - 1 = \sqrt 2 \left( {1 - \sqrt 2 } \right) + 2 \cr & \Leftrightarrow \sqrt 2 - 1 = \sqrt 2 - 2 + 2\,\left( \text{Vô lí} \right) \cr} \)
Vậy M không thuộc đồ thị.
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 9 - Là năm cuối ở cấp trung học cơ sở, sắp phải bước vào một kì thi căng thẳng và sắp chia tay bạn bè, thầy cô và cả kì vọng của phụ huynh ngày càng lớn mang tên "Lên cấp 3". Thật là áp lực nhưng các em hãy cứ tự tin vào bản thân là sẻ vượt qua nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK