Cho tam giác ABC vuông ở A có đường cao AD. Lấy H thuộc AD và E thuộc CD

Câu hỏi :

Cho tam giác ABC vuông ở A có đường cao AD. Lấy H thuộc AD và E thuộc CD sao cho HE//AC. Khi đó

A. BHAE

B. BH // AE

C. AE   AD

D. BH   AD

* Đáp án

* Hướng dẫn giải

+ Ta có: HE // AC; AC   AB (do tam giác ABC vuông tại A)

Suy ra HE   AB (quan hệ từ vuông góc đến song song)

Trong tam giác ABE có: 

AD   BE tại D nên AD là một đường cao của tam giác ABE

HE   AB nên E, H thuộc một đường cao của tam giác ABE

 Mà H = HE    AD 

Do đó H là giao của hai đường cao trong tam giác ABE

Nên H là giao của ba đường cao trong tam giác ABE (ba đường cao của một tam giác đồng quy tại một điểm)

Vậy H là trực tâm của tam giác ABE 

Suy ra BH   AE nên đáp án A đúng, đáp án B sai

+ Vì tia AD và tia AE đều nằm trong góc BAC, mà BAC^=90° nên AD không thể vuông góc với AE, do đó đáp án C sai.

+ Vì BH    AE mà AE   AD = A nên BH không thể vuông góc với AD nên đáp án D sai.

Chọn đáp án A

Bạn có biết?

Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 7

Lớp 7 - Năm thứ hai ở cấp trung học cơ sở, một cuồng quay mới lại đến vẫn bước tiếp trên đường đời học sinh. Học tập vẫn là nhiệm vụ chính!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK