Cho tam giác ABC có AB = 6 cm; AC = 8 cm; BC = 10 cm.
a) Chứng minh tam giác ABC vuông tại A.
b) Vẽ tia phân giác BD của góc ABC (D thuộc AC), từ D vẽ DE ^ BC (E Î BC).
Chứng minh DA = DE.
c) Kéo dài ED và BA cắt nhau tại F. Chứng minh DF > DE.
d) Chứng minh đường thẳng BD là đường trung trực của đoạn thẳng FC.
a) Ta có AB = 6(cm) (gt); AC = 8(cm) (gt) nên
AB2 + AC2 = 62 + 82 =100 (cm) (1)
Mà BC = 10(cm) (gt) nên BC2 = 102 = 100 (cm) (2)
Từ (1) và (2) suy ra AB2 + AC2 = BC2
Xét tam giác ABC có AB2 + AC2 = BC2(chứng minh trên) nên tam giác ABC vuông tại A (Định lí Pytago đảo). (1 điểm)
b) Vì BD là phân giác của góc ABC; DA, DE lần lượt là khoảng cách từ D đến AB, BC
Suy ra DA = DE (tính chất tia phân giác của một góc) (1 điểm)
c) Tam giác ADF vuông tại A nên DF > AD
Lại có AD = DE (chứng minh trên) nên DF > DE (0,5 điểm)
d) Ta có: (tam giác ABD vuông tại A)
(tam giác EBD vuông tại E)
Mà (BD là tia phân giác của góc ABC)
Do đó:
Lại có (hai góc đối đỉnh)
Suy ra
Xét tam giác BDF và tam giác BDC có:
BD cạnh chung
(BD là tia phân giác của góc ABC)
(chứng minh trên)
Do đó: (g.c.g)
BF = BC suy ra B thuộc đường trung trực FC (3)
Và DF = DC suy ra D thuộc đường trung trực FC (4)
Từ (3) và (4) suy ra BD là đường trung trực của FC.Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".
Nguồn : Wikipedia - Bách khoa toàn thưLớp 7 - Năm thứ hai ở cấp trung học cơ sở, một cuồng quay mới lại đến vẫn bước tiếp trên đường đời học sinh. Học tập vẫn là nhiệm vụ chính!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK