Cho ΔABC vuông tại A, đường trung tuyến CM
a) Cho biết BC = 10cm, AC = 6cm. Tính độ dài đoạn thẳng AB, BM;
b) Trên tia đối của tia MC lấy điểm D sao cho MD = MC.
Chứng minh rằng ΔMAC = ΔMBD và AC = BD;
c) Chứng minh rằng AC + BC > 2CM;
d) Gọi K là điểm trên đoạn thẳng AM sao cho . Gọi N là giao điểm của CK và AD, I là giao điểm của BN và CD. Chứng minh rằng: CD = 3ID.
a) Ta có ΔABC vuông tại A
(định lý Pytago)
Ta có BM =
b,
Xét ΔMAC và ΔMBD có:
(2 góc đối đỉnh)
MA = MB (vì M là trung điểm của AB)
MC = MD (gt)
Do đó: ΔMAC = ΔMBD (c.g.c)
(2 cạnh tương ứng) (1 điểm)
c) Ta có AC + BC = BD + BC (1) (vì AC = BD)
Lại có 2CM = CD (2) (vì M là trung điểm của CD)
Xét ΔBCD có: BD + BC > CD (3) (bất đẳng thức tam giác)
Từ (1), (2) và (3) AC + BC > 2CM (1 điểm)
c,
Ta có AC + BC = BD + BC (1) (vì AC = BD)
Lại có 2CM = CD (2) (vì M là trung điểm của CD)
Xét ΔBCD có: BD + BC > CD (3) (bất đẳng thức tam giác)
Từ (1), (2) và (3) AC + BC > 2CM (1 điểm)
d,
K là trọng tâm của ΔACD
CK cắt AD tại N là trung điểm của AD
Xét ΔABD có: DM và BN là 2 đường trung tuyến cắt nhau tại I
I là trọng tâm ΔABD
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".
Nguồn : Wikipedia - Bách khoa toàn thưLớp 7 - Năm thứ hai ở cấp trung học cơ sở, một cuồng quay mới lại đến vẫn bước tiếp trên đường đời học sinh. Học tập vẫn là nhiệm vụ chính!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK