Hai vòi nước cùng chảy vào một bể nước cạn (không có nước) thì sau \(4\dfrac{4}{5}\) giờ đầy bể. Nếu ngay từ đầu, chỉ mở vòi thứ nhất và 9 giờ sau mới mở thêm vòi thứ hai thì phải...

Câu hỏi :

Hai vòi nước cùng chảy vào một bể nước cạn (không có nước) thì sau \(4\dfrac{4}{5}\) giờ đầy bể. Nếu ngay từ đầu, chỉ mở vòi thứ nhất và 9 giờ sau mới mở thêm vòi thứ hai thì phải \(\dfrac{6}{5}\) giờ nữa mới đầy bể. Hỏi nếu ngay từ đầu, chỉ mở vòi thứ hai thì phải bao lâu mới đầy bể ?

A. 5 giờ 

B. 6 giờ 

C. 7 giờ 

D. 8 giờ 

* Đáp án

D

* Hướng dẫn giải

Gọi \(x\) (giờ) là thời gian để riêng vòi thứ nhất chảy đầy bể; \(y\) (giờ) là thời gian để riêng vòi thứ hai chảy đầy bể. Điều kiện của ẩn là: \(x;y > \dfrac{{24}}{5}\).

Khi đó, riêng vòi thứ nhất chảy trong 1 giờ thì được \(\dfrac{1}{x}\) bể.

Riêng vòi thứ hai chảy trong 1 giờ thì được \(\dfrac{1}{y}\) bể 

Vậy hai vòi cùng chảy từ đầu trong \(4\dfrac{4}{5}\) giờ  (tức \(\dfrac{{24}}{5}\) giờ) thì được \(\dfrac{{24}}{5}\left( {\dfrac{1}{x} + \dfrac{1}{y}} \right)\)  bể nước và đầy bể theo giả thiết ta có phương trình \(\dfrac{{24}}{5}\left( {\dfrac{1}{x} + \dfrac{1}{y}} \right) = 1 \Leftrightarrow \dfrac{1}{x} + \dfrac{1}{y} = \dfrac{5}{{24}}\) 

Giả thiết thứ hai có nghĩa là mở vòi thứ nhất chảy trong \(\left( {9 + \dfrac{6}{5}} \right)\) giờ cộng với vòi thứ hai chảy trong \(\dfrac{6}{5}\)  giờ nữa  thì đầy bể. Điều đó được mô tả bởi phương trình  \(\dfrac{{51}}{5}.\dfrac{1}{x} + \dfrac{6}{5}.\dfrac{1}{y} = 1\)

Ta có hệ phương trình \(\left\{ \begin{array}{l}\dfrac{1}{x} + \dfrac{1}{y} = \dfrac{5}{{24}}\\\dfrac{{51}}{5}.\dfrac{1}{x} + \dfrac{6}{5}.\dfrac{1}{y} = 1\end{array} \right.\)

Đặt \(\dfrac{1}{x} = u;\dfrac{1}{y} = v\,\) ta có hệ phương trình bậc nhất hai ẩn \(u\) và \(v:\) \(\left\{ \begin{array}{l}u + v = \dfrac{5}{{24}}\\\dfrac{{51}}{5}u + \dfrac{6}{5}v = 1\end{array} \right.\)

Ta giải hệ này bằng phương pháp cộng đại số

\(\left\{ \begin{array}{l}u + v = \dfrac{5}{{24}}\\\dfrac{{51}}{5}u + \dfrac{6}{5}v = 1\end{array} \right. \)\(\Leftrightarrow \left\{ \begin{array}{l}\dfrac{6}{5}u + \dfrac{6}{5}v = \dfrac{1}{4}\\\dfrac{{51}}{5}u + \dfrac{6}{5}v = 1\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}u + v = \dfrac{5}{{24}}\\9u = \dfrac{3}{4}\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}u = \dfrac{1}{{12}}\\v = \dfrac{1}{8}\end{array} \right.\,\left( {tm} \right)\)

Trở về phương trình ban đầu, ta có \(x = \dfrac{1}{u} = 12\left( {tm} \right)\) và \(y = \dfrac{1}{v} = 8\left( {tm} \right)\)

Vậy vòi thứ nhất chảy riêng trong \(12\) giờ thì đầy bể, vòi thứ hai chảy riêng trong \(8\) giờ thì đầy bể.

Chọn D

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi HK2 môn Toán 9 năm 2021-2022 Trường THCS Hoa Lưu

Số câu hỏi: 40

Bạn có biết?

Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 9

Lớp 9 - Là năm cuối ở cấp trung học cơ sở, sắp phải bước vào một kì thi căng thẳng và sắp chia tay bạn bè, thầy cô và cả kì vọng của phụ huynh ngày càng lớn mang tên "Lên cấp 3". Thật là áp lực nhưng các em hãy cứ tự tin vào bản thân là sẻ vượt qua nhé!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK