Cho các khẳng định sau:
(I). Nếu hai đường thẳng phân biệt cùng cắt đường thẳng thứ ba và trong các góc tạo thành có một cặp góc so le trong bằng nhau thì các cặp góc đồng vị bằng nhau;
(II). Nếu hai đường thẳng phân biệt cùng cắt đường thẳng thứ ba và trong các góc tạo thành có một cặp góc đồng vị bằng nhau thì các cặp góc so le trong bằng nhau;
(III). Nếu hai đường thẳng phân biệt cùng cắt đường thẳng thứ ba và trong các góc tạo thành có một cặp góc đồng vị bằng nhau thì các cặp góc so le trong bù nhau.
Có bao nhiêu định lí trong các khẳng định trên?
Cho hình vẽ:
Hãy phát biểu định lí sau bằng lời:
GT |
Đường thẳng c cắt hai đường thẳng a, b lần lượt tại A và B; a // b |
KL |
\({\widehat A_1} = {\widehat B_1}\) |
Cho định lí: “Hai tia phân giác của hai góc kề bù thì vuông góc với nhau” được minh hoạ bởi hình vẽ sau:
Giả thiết của định lí trên là
Khi học bài “Định lí và chứng minh định lí”, cô giáo yêu cầu học sinh lấy ví dụ về các định lí. Ba bạn An, Khánh, Bình phát biểu như sau:
An: Định lí “Nếu một đường thẳng cắt một trong hai đường thẳng song song thì nó cũng cắt đường thẳng còn lại”.
Khánh: Định lí “Nếu qua điểm M nằm ngoài đường thẳng a có hai đường thẳng song song với a thì chúng trùng nhau”.
Bình: Định lí “Hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì chúng song song với nhau”
Theo em, bạn nào phát biểu đúng về định lí?
Cho định lí: “Nếu một đường thẳng vuông góc với một trong hai đường thẳng song song thì nó vuông góc với đường thẳng còn lại”.
Giả thiết và kết luận của định lí trên là:
A.
GT | x ⊥ y; y // z |
KL | x ⊥ z |
B.
GT | x // y; y // z |
KL | x ⊥ z |
C.
GT | x ⊥ y; y ⊥ z |
KL | x // z |
D.
GT | x ⊥ y; y // z |
KL | x // z |
Phát biểu định lí sau bằng lời:
GT |
a ⊥ b; c ⊥ b; a ≠ c |
KL |
a // c |
Cho định lí: “Nếu hai đường thẳng phân biệt cùng cắt đường thẳng thứ ba và trong các góc tạo thành có một cặp góc đồng vị bằng nhau thì các cặp góc trong cùng phía bù nhau” và hình vẽ minh hoạ sau:
Hãy viết giả thiết, kết luận cho định lý trên:
A.
GT | aa' cắt cc' tại A, bb' cắt cc' tại B, aa' ≠ bb', \[\widehat {aAB} = \widehat {bBc'}\] |
KL | \[\widehat {{\rm{aA}}B} + \widehat {ABb} = 180^\circ ;\] \[\widehat {{\rm{a'A}}B} + \widehat {ABb'} = 180^\circ \] |
B.
GT | aa' cắt cc' tại A, bb' cắt cc' tại B, aa' ≠ bb' |
KL | \[\widehat {aAB} = \widehat {bBc'};\] \[\widehat {{\rm{aA}}B} + \widehat {ABb} = 180^\circ ;\] \[\widehat {{\rm{a'A}}B} + \widehat {ABb'} = 180^\circ \] |
C.
GT | aa' cắt cc' tại A, bb' cắt cc' tại B, aa' ≠ bb', \[\widehat {aAB} = \widehat {bBc'};\] \[\widehat {{\rm{aA}}B} + \widehat {ABb} = 180^\circ ;\] |
KL | \[\widehat {{\rm{a'A}}B} + \widehat {ABb'} = 180^\circ \] |
D.
GT | aa' cắt cc' tại A, bb' cắt cc' tại B, aa' ≠ bb', \[\widehat {aAB} = \widehat {bBc'};\] |
KL | \[\widehat {{\rm{aA}}B} = \widehat {ABb};\] \[\widehat {{\rm{a'A}}B} = \widehat {ABb'};\] |
Cho định lí: “Hai góc đối đỉnh thì bằng nhau” và hình vẽ minh hoạ sau:
Viết giả thiết, kết luận cho định lí trên:
A.
GT | \({\widehat O_1}\) và \({\widehat O_3}\) là hai góc đối đỉnh |
KL | \({\widehat O_1} + {\widehat O_3} = 180^\circ \) |
B.
GT | \({\widehat O_1}\) và \({\widehat O_3}\) là hai góc kề bù |
KL | \({\widehat O_1} = {\widehat O_3}\) |
C.
GT | \({\widehat O_1}\) và \({\widehat O_3}\) là hai góc đối đỉnh |
KL | \({\widehat O_1} = {\widehat O_3}\) |
D.
GT | \({\widehat O_1}\) và \({\widehat O_3}\) là hai góc kề bù |
KL | \({\widehat O_3} = {\widehat O_4}\) |
Cho định lí: “Hai góc đối đỉnh thì bằng nhau” được minh hoạ bởi hình vẽ sau:
Hãy sắp xếp các câu sau để được lời giải hoàn chỉnh cho bài toán chứng minh định lí trên:
(I). “Suy ra \({\widehat O_1} = {\widehat O_3}\) (vì cùng bù với \({\widehat O_2}\))”;
(II). “Ta có: \({\widehat O_1} + {\widehat O_2} = 180^\circ \)(hai góc kề bù) và \({\widehat O_2} + {\widehat O_3} = 180^\circ \)(hai góc kề bù)”;
(III). “Suy ra \({\widehat O_2} = {\widehat O_4}\) (vì cùng bù với \({\widehat O_3}\))
Vậy định lí được chứng minh.”;
(IV). “Lại có: \[{\widehat O_2} + {\widehat O_3} = 180^\circ \](hai góc kề bù) và \({\widehat O_3} + {\widehat O_4} = 180^\circ \)(hai góc kề bù)”.
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Copyright © 2021 HOCTAPSGK