Trang chủ Lớp 11 Toán Lớp 11 SGK Cũ Chương 5: Đạo Hàm Toán 11 Bài 1: Định nghĩa và ý nghĩa của đạo hàm

Toán 11 Bài 1: Định nghĩa và ý nghĩa của đạo hàm

Lý thuyết Bài tập

Tóm tắt bài

1.1. Định nghĩa đạo hàm tại một điểm

a) Định nghĩa

Cho hàm số \(y=f(x)\) xác định trên khoảng \((a;b)\)và \(x_0 \in (a;b)\), đạo hàm của hàm số tại điểm \(x_0\) là: \(f'({x_0}) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f(x) - f({x_0})}}{{x - {x_0}}}.\)

b) Chú ý

Nếu kí hiệu \(\Delta x = x - {x_0};\,\,\Delta y = f({x_0} + \Delta x) - f({x_0})\) thì:

\(f'({x_0}) = \mathop {\lim }\limits_{ x \to x_0} \frac{{f(x) - f({x_0})}}{{x - {x_0}}}= \mathop {\lim }\limits_{\Delta x \to 0} \frac{{f({x_0} + \Delta x) - f({x_0})}}{{x - {x_0}}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\Delta y}}{{\Delta x}}.\)

Nếu hàm số \(y=f(x)\) có đạo hàm tại \(x_0\) thì liên tục tại điểm đó.

Để chứng minh hàm số không có đạo hàm tại điểm \(x_0\) ta thực hiện như sau:

  • Chứng minh \(\mathop {\lim }\limits_{\Delta x \to 0} \frac{{f({x_0} + \Delta x) - f({x_0})}}{{x - {x_0}}}\) không tồn tại.
  • Hoặc chứng minh hàm số không liên tục tại \(x_0.\)

c) Các bước tính đạo hàm bằng định nghĩa

  • Tính \(\Delta y = f({x_0} + \Delta x) - f({x_0}) = f(x) - f({x_0})\)
  • Lập tỷ số: \(\frac{{\Delta y}}{{\Delta x}}.\)
  • Tính \(\mathop {\lim }\limits_{\Delta x \to 0} \frac{{\Delta y}}{{\Delta x}}.\)

1.2. Ý nghĩa hình học của đạo hàm

a) Ý nghĩa hình học

Cho hàm số \(y=f(x)\) có đồ thị (C):

  • \(f'(x_0)\) là hệ số góc của tiếp tuyến đồ thị (C) của hàm số \(y=f(x)\) tại \(M_0(x_0;y_0) \in (C).\)
  • Phương trình tiếp tuyến của đồ thị hàm số \(y=f(x)\) tại \(M_0(x_0;y_0) \in (C)\) là:

\(y = f'({x_0}).(x - {x_0}) + {y_0}\)

Các bước viết phương trình tiếp tuyến của đồ thị (C) tại điểm \(M_0(x_0;y_0) \in (C):\)

Bước 1: Tính \(f'({x_0}) = \mathop {\lim }\limits_{ x \to x_0} \frac{{f(x) - f({x_0})}}{{x - {x_0}}}= \mathop {\lim }\limits_{\Delta x \to 0} \frac{{f({x_0} + \Delta x) - f({x_0})}}{{x - {x_0}}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\Delta y}}{{\Delta x}}.\)

Bước 2: Hệ số góc của tiếp tuyến với đồ thị (C) tại \(M_0\) là \(k=f'(x_0)\)

Bước 3: Phương trình tiếp tuyến với đồ thị (C) tại điểm \(M_0(x_0;y_0) \in (C)\) là: \(y = f'({x_0}).(x - {x_0}) + {y_0}\)

Viết phương trình tiếp tuyến của đồ thị (C) hàm số y=f(x) khi biết hệ số k, ta thực hiện các bước sau:

Bước 1: Gọi \(M_0(x_0;y_0) \in (C)\) là tiếp điểm của tiếp tuyến với đồ thị (C).

Bước 2: Tính \(f'({x_0}) = \mathop {\lim }\limits_{ x \to x_0} \frac{{f(x) - f({x_0})}}{{x - {x_0}}}= \mathop {\lim }\limits_{\Delta x \to 0} \frac{{f({x_0} + \Delta x) - f({x_0})}}{{x - {x_0}}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\Delta y}}{{\Delta x}}.\)

Bước 3: Giải phương trình \(k=f'(x_0)\) tìm \(x_0\), rồi tìm \(y_0=f(x_0).\)

Bước 4: Phương trình tiếp tuyến của đồ thị (C) với hệ số góc k là: \(y = k(x - {x_0}) + {y_0}.\)

b) Ý nghĩa vật lý

  • Vận tốc tức thời của chuyển động thẳng xác định bởi phương trình: \(s=s(t)\) tại thời điểm \(t_0\) là \(v(t_0)=s'(t_0).\)
  • Cướng độ tức thời của điện lượng \(Q=Q(t)\) tại thời điểm \(t_0\) là: \(I(t_0)=Q'(t_0).\)

Ví dụ 1:

Dùng định nghĩa, tính đạo hàm các hàm số sau:

a) \(f(x)=2x^2+3x+1\) tại \(x_0=-1.\)

b) \(f(x)=sinx\) tại \(x_0=\frac{\pi}{6}.\)

c) \(f(x) = \sqrt {2x - 1}\) với \(x>\frac{1}{2}.\)

Hướng dẫn giải:

a) \(f(x)=2x^2+3x+1\)

\(\Delta x = x + 1 \Rightarrow x = - 1 + \Delta x\) và \(\Delta y = f( - 1 + \Delta x) - f( - 1) = 2{\left( {\Delta x} \right)^2} - \Delta x\)

Vậy: \(f'( - 1) = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\Delta y}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{2{{\left( {\Delta x} \right)}^2} - \Delta x}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \left( {2\Delta x - 1} \right) = - 1.\)

b) \(f(x)=sinx\) 

\(\Delta x = x - \frac{\pi }{6} \Rightarrow x = \frac{\pi }{6} + \Delta x\)

\(\Delta y = f\left( {\frac{\pi }{6} + \Delta x} \right) - f\left( {\frac{\pi }{6}} \right) = \sin \left( {\frac{\pi }{6} + \Delta x} \right) - \sin \left( {\frac{\pi }{6}} \right) = 2\cos \left( {\frac{\pi }{6} + \frac{{\Delta x}}{2}} \right).\sin \left( {\frac{{\Delta x}}{2}} \right)\)

\(f'\left( {\frac{\pi }{6}} \right) = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\Delta y}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{2\cos \left( {\frac{\pi }{6} + \frac{{\Delta x}}{2}} \right).\sin \left( {\frac{{\Delta x}}{2}} \right)}}{{\Delta x}}\)

\(\begin{array}{l} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\cos \left( {\frac{\pi }{6} + \frac{{\Delta x}}{2}} \right).\sin \left( {\frac{{\Delta x}}{2}} \right)}}{{\frac{{\Delta x}}{2}}} = \mathop {\lim }\limits_{\Delta x \to 0} \cos \left( {\frac{\pi }{6} + \frac{{\Delta x}}{2}} \right).\mathop {\lim }\limits_{\Delta x \to 0} \frac{{\sin \left( {\frac{{\Delta x}}{2}} \right)}}{{\frac{{\Delta x}}{2}}}\\ = \cos \left( {\frac{\pi }{6}} \right).1 = \cos \left( {\frac{\pi }{6}} \right) = \frac{{\sqrt 3 }}{2}. \end{array}\)

c) \(f(x) = \sqrt {2x - 1}\) với \(x>\frac{1}{2}\)

\(\begin{array}{l} f'(x) = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{f(x + \Delta x) - f(x)}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\sqrt {2(x + \Delta x) - 1} - \sqrt {2x - 1} }}{{\Delta x}}\\ = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{2\Delta x}}{{\left( {\sqrt {2(x + \Delta x) - 1} - \sqrt {2x - 1} } \right).\Delta x}}\\ = \mathop {\lim }\limits_{\Delta x \to 0} \frac{2}{{\sqrt {2(x + \Delta x) - 1} - \sqrt {2x - 1} }} = \frac{2}{{\sqrt {2x - 1} }}. \end{array}\)

Ví dụ 2:

Cho hàm số \(f(x) = \left\{ \begin{array}{l} {(x - 1)^2}\,khi\,\,x \ge 0\\ {(x + 1)^2}\,khi\,\,x < 0 \end{array} \right..\) Chứng minh rằng hàm số liên tục tại x=0 nhưng không có đạo hàm tại x=0.

Hướng dẫn giải:

Chứng minh hàm số liên tục tại x=0:

\(\begin{array}{l} \mathop {\lim }\limits_{x \to {0^ + }} f(x) = \mathop {\lim }\limits_{x \to {0^ + }} {(x - 1)^2} = 1 = f(0)\\ \mathop {\lim }\limits_{x \to {0^ - }} f(x) = \mathop {\lim }\limits_{x \to {0^ - }} {(x + 1)^2} = 1 = f(0) \end{array}\)

Suy ra: \(\mathop {\lim }\limits_{x \to {0^ + }} f(x) = \mathop {\lim }\limits_{x \to {0^ - }} f(x) = f(0)\) nên hàm số liên tục tại x=0.

Chứng minh hàm số không có đạo hàm tại x=0:

\(\mathop {\lim }\limits_{\Delta x \to {0^ + }} \frac{{f\left( {\Delta x} \right) - f(0)}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to {0^ + }} \frac{{{{\left( {\Delta x - 1} \right)}^2} - 1}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to {0^ + }} \left( {\Delta x - 2} \right) = - 2\)

\(\mathop {\lim }\limits_{\Delta x \to {0^ - }} \frac{{f\left( {\Delta x} \right) - f(0)}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to {0^ - }} \frac{{{{\left( {\Delta x + 1} \right)}^2} - 1}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to {0^ - }} \left( {\Delta x + 2} \right) = 2\)

Suy ra: \(\mathop {\lim }\limits_{\Delta x \to {0^ + }} \frac{{f\left( {\Delta x} \right) - f(0)}}{{\Delta x}} \ne \mathop {\lim }\limits_{\Delta x \to {0^ - }} \frac{{f\left( {\Delta x} \right) - f(0)}}{{\Delta x}}\)

Nên không tồn tại \(\mathop {\lim }\limits_{\Delta x \to 0} \frac{{f\left( {\Delta x} \right) - f(0)}}{{\Delta x}}\).

Vậy hàm số không có đạo hàm tại x=0.

Ví dụ 3:

a) Viết phương trình tiếp tuyến của đồ thị hàm số \(y = {x^3} - 3{x^2} + 2\) tại điểm (-1;2).

b) Viết phương trình tiếp tuyến của hàm số \(y=x^2-2x+3\) biết:

i) Tiếp tuyến song song với đường thẳng \(4x-2y+5=0.\)

ii) Tiếp tuyến vuông góc với đường thẳng \(x+4y=0.\)

Hướng dẫn giải:

a) Ta có: 

\(\begin{array}{l} f'({x_0}) = f'( - 1) = \mathop {\lim }\limits_{x \to - 1} \frac{{f(x) - f( - 1)}}{{x + 1}} = \mathop {\lim }\limits_{x \to - 1} \frac{{{x^3} - 3{x^2} + 4}}{{x + 1}}\\ = \mathop {\lim }\limits_{x \to - 1} ({x^2} - 4x + 4) = 9. \end{array}\)

Vậy hệ số góc của tiếp tuyến với đồ thị (C) tại điểm (-1;-2) là k=f'(-1)=9.

Phương trình tiếp tuyến với đồ thị (C) tại điểm (-1;2) là: \(y = 9(x + 1) - 2 = 9x + 7.\)

b) Gọi \(M_0(x_0;y_0) \in (C)\) là tiếp điểm của tiếp tuyến với đồ thị (C) của hàm số \(y=x^2-2x+3\):

\(f'(x) = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{f(x + \Delta x) - f(x)}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\left[ {{{\left( {x + \Delta x} \right)}^2} - 2(x + \Delta x) + 3} \right] - \left[ {{x^2} - 2x + 3} \right]}}{{\Delta x}}\)

\(= \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\left( {2x + \Delta x} \right).\Delta x - 2.\Delta x}}{{\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} \left( {2x + \Delta x - 2} \right) = 2x - 2.\)

i) Đường thẳng \(4x - 2y + 5 = 0 \Leftrightarrow y = 2x + \frac{5}{2}\) có hệ số góc k'=2.

Do tiếp tuyến song song với đường thẳng 4x-2y+5=0 nên có hệ số góc k=2.

Ta có: \(f'({x_0}) = 2 \Leftrightarrow 2{x_0} - 2 = 2 \Leftrightarrow {x_0} = 2 \Rightarrow {y_0} = f(2) = 3.\)

Vậy phương trình tiếp tuyến là: \(y = 2(x - 2) + 3 \Rightarrow y = 2x - 1.\)

ii) Đường thẳng \(x + 4y = 0 \Leftrightarrow y = - \frac{1}{4}x\) có hệ số góc \(k'=-\frac{1}{4}.\)

Gọi k là hệ số góc của tiếp tuyến. Do tiếp tuyến vuông góc với đường thẳng x+4y=0 nên: \(k.k' = - 1 \Rightarrow k = 4.\)

Ta có: \(f'({x_0}) = 4 \Leftrightarrow 2{x_0} - 2 = 4 \Leftrightarrow {x_0} = 3 \Rightarrow {y_0} = f(3) = 6.\)

Vậy phương trình tiếp tuyến là: \(y = 4(x - 3) + 6 \Rightarrow y = 4x - 6.\)

3. Luyện tập Bài 1 chương 5 giải tích 11

Trong phạm vi bài học chỉ có thể giới thiệu đến các em những nội dung cơ bản nhất của bài học Định nghĩa và ý nghĩa của đạo hàm

3.1 Trắc nghiệm về Định nghĩa và ý nghĩa của đạo hàm

Để cũng cố bài học xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Toán 11 Bài 1 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.

Câu 4- Câu 10: Xem thêm phần trắc nghiệm để làm thử Online 

3.2 Bài tập SGK và Nâng Cao về Định nghĩa và ý nghĩa của đạo hàm

Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Toán 11 Bài 1 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Giải tích 11 Cơ bản và Nâng cao.

Bài tập 4 trang 192 SGK Toán 11 NC

Bài tập 5 trang 192 SGK Toán 11 NC

Bài tập 6 trang 192 SGK Toán 11 NC

Bài tập trang 192 SGK Toán 11 NC

Bài tập 8 trang 192 SGK Toán 11 NC

Bài tập 9 trang 192 SGK Toán 11 NC

Bài tập 10 trang 195 SGK Toán 11 NC

Bài tập 11 trang 195 SGK Toán 11 NC

Bài tập 12 trang 195 SGK Toán 11 NC

Bài tập 13 trang 195 SGK Toán 11 NC

Bài tập 14 trang 195 SGK Toán 11 NC

Bài tập 15 trang 195 SGK Toán 11 NC

4. Hỏi đáp về bài 1 chương 5 giải tích 11

Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán HOCTAP247 sẽ sớm trả lời cho các em. 

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK