Trang chủ Lớp 9 Toán Lớp 9 SGK Cũ Chương 2: Hàm Số Bậc Nhất Toán 9 Bài 1: Nhắc lại và bổ sung các khái niệm về hàm số

Toán 9 Bài 1: Nhắc lại và bổ sung các khái niệm về hàm số

Lý thuyết Bài tập

Tóm tắt bài

1.1. Khái niệm hàm số

Nếu đại lượng \(y\) phụ thuộc vào đại lượng thay đổi \(x\) sao cho với mỗi giá trị của x ta luôn xác định được chỉ một giá trị tương ứng của \(y\) thì \(y\) được gọi là hàm số của \(x\)

1.2. Đồ thị hàm số

Đồ thị hàm số \(y=f(x)\) là tập hợp tất cả các điểm biểu diễn các cặp giá trị tương ứng \((x;f(x))\) trên mặt phẳng tọa độ

1.3. Hàm số đồng biến, nghịch biến

Cho hàm số \(y=f(x)\) xác định với mọi giá trị \(x\) thuộc \(\mathbb{R}\). Với \(x_{1}, x_{2}\) bất kì thuộc \(\mathbb{R}}\):

Nếu \(x_{1}

Nếu \(x_1f(x_2)\) thì ta nói hàm số đó nghịch biến biến trên \(\mathbb{R}\)

 

2.1. Bài tập cơ bản

Bài 1: Cho hàm số \(y=f(x)=x^2\). Tính \(f(-2)\) và \(f(0)\)

Hướng dẫn: Ta có \(f(-2)=(-2)^2=4\), \(f(0)=0^2=0\)

Bài 2: Xác định hàm số \(f(x)\) biết rằng \(f(x+1)=x^2-2x+3\)

Hướng dẫn: Đặt \(x+1=t\) thì \(x=t-1\). Khi đó\(f(t)=(t-1)^2-2(t-1)+3=t^2-4t+6\). Vậy \(f(x)=x^2-4x+6\)

Bài 3: Chứng minh rằng trên tập số thực, hàm số \(y=f(x)=ax+b (a>0)\) đồng biến  

Hướng dẫn: Với \(x_1, x_2 \in \mathbb{R}\) và \(x_10\), suy ra \(ax_1+b

2.2. Bài tập nâng cao

Bài 1: Cho Cho hàm số \(f(x)=ax^5+bx^3+cx-5\) (\(a,b,c\) là hằng số). Cho biết \(f(-3)=-10\). Tính \(f(3)\)

Hướng dẫn: Ta có \(f(3)+f(-3)=-10\) nên \(f(3)=0\)

Bài 2: Chứng minh công thức tính khoảng cách \(d\) giữa hai điểm \(A(x_1;y_1)\) và \(B(x_2;y_2)\) là \(d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}\)

Hướng dẫn: Gọi \(C(x_2;y_2)\), ta có khoảng cách giữa 2 điểm \(x_1,x_2\) trên trục hoành chính là \(AC\) nên \(AC= |x_2-x_1|\), tương tự \(BC= |y_2-y_1|\)

Do tam giác \(ABC\) vuông tại \(C\) nên \(AB^2=AC^2+BC^2=(x_2-x_1)^2+(y_2-y_1)^2\) hay \(d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}\)

3. Luyện tập Bài 1 Chương 2 Đại số 9

Qua bài giảng Nhắc lại và bổ sung các khái niệm về hàm số này, các em cần hoàn thành 1 số mục tiêu mà bài đưa ra như : 

  • Nắm được khái niệm hàm số
  • Khi nào hàm số đồng biến, hàm số nghịch biến

3.1 Trắc nghiệm Nhắc lại và bổ sung các khái niệm về hàm số

Để cũng cố bài học xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Toán 9 Bài 1 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.

Câu 2- Câu 5: Xem thêm phần trắc nghiệm để làm thử Online 

3.2 Bài tập SGK Nhắc lại và bổ sung các khái niệm về hàm số

Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Toán 9 Bài 1 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Toán 9 tập 1

Bài tập 4 trang 45 SGK Toán 9 Tập 1

Bài tập 5 trang 45 SGK Toán 9 Tập 1

Bài tập 6 trang 45 SGK Toán 9 Tập 1

Bài tập 7 trang 46 SGK Toán 9 Tập 1

Bài tập 1 trang 60 SBT Toán 9 Tập 1

Bài tập 2 trang 60 SBT Toán 9 Tập 1

Bài tập 3 trang 60 SBT Toán 9 Tập 1

Bài tập 4 trang 60 SBT Toán 9 Tập 1

Bài tập 5 trang 61 SBT Toán 9 Tập 1

Bài tập 5 trang 61 SBT Toán 9 Tập 1

Bài tập 1.1 trang 61 SBT Toán 9 Tập 1

Bài tập 1.2 trang 61 SBT Toán 9 Tập 1

4. Hỏi đáp Bài 1 Chương 2 Đại số 9

Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán HOCTAP247 sẽ sớm trả lời cho các em. 

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 9

Lớp 9 - Là năm cuối ở cấp trung học cơ sở, sắp phải bước vào một kì thi căng thẳng và sắp chia tay bạn bè, thầy cô và cả kì vọng của phụ huynh ngày càng lớn mang tên "Lên cấp 3". Thật là áp lực nhưng các em hãy cứ tự tin vào bản thân là sẻ vượt qua nhé!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK