Hai đường thẳng xx’ và yy’ cắt nhau tại A, biết \(\widehat {xAy} = {36^o}.\)
a) Tính các góc \(\widehat {yAx'},\widehat {x'Ay'}\) và \(\widehat {y'Ax}.\)
b) Vẽ tia phân giác At của \(\widehat {xAy}\) và tia phân giác của \(\widehat {x'Ay'}.\) Chứng tỏ rằng hai tia At và At’ là hai tia đối nhau.
a) \(\widehat {xAy} + \widehat {yAx'} = {180^o}\) (kề bù)
\({36^o} + \widehat {yAx'} = {180^o}\)
\(\widehat {yAx'} = {180^o} - {36^o}\)
\(\widehat {yAx'} = {144^o}\)
\(\widehat {x'Ay'} = \widehat {xAy} = {36^o}\)(đối đỉnh)
\(\widehat {y'Ax} = \widehat {yAx'} = {144^o}\)(đối đỉnh)
b) At là phân giác của \(\widehat {xAy}\) nên \(\widehat {xAt} = \widehat {yAt} = \dfrac{{\widehat {xAy}}}{ 2} =\dfrac {{{{36}^0}} }{ 2} = {18^o}.\)
\(\widehat {x'Ay'} = \widehat {xAy} = {36^o}\) (đối đỉnh), At’ là tia phân giác của \(\widehat {x'Ay'}\) nên \(\widehat {x'At'} = \widehat {y'At'} = \dfrac{{\widehat {x'Ay'}}}{ 2} = \dfrac{{{{36}^o}}}{ 2} = {18^o}.\)
\( \Rightarrow \widehat {xAt} = \widehat {yAt} = \widehat {x'At'} = \widehat {y'At'} = \dfrac {1 }{ 2}\widehat {xAy}.\) Mà \( \Rightarrow \widehat {xAt} + \widehat {tAy} + \widehat {y'At'} = \dfrac {1}{ 2}\widehat {xAy}.\) Mà \( \Rightarrow \widehat {xAt} + \widehat {tAy} + \widehat {yAx'} = {180^o}.\)
Do đó: \( \Rightarrow \widehat {x'At'} + \widehat {tAy} + \widehat {yAx'} = {180^o}\) hay \( \Rightarrow \widehat {tAt'} = {180^o},\)
Chứng tỏ At’ và At là hai tia đối nhau.
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 7 - Năm thứ hai ở cấp trung học cơ sở, một cuồng quay mới lại đến vẫn bước tiếp trên đường đời học sinh. Học tập vẫn là nhiệm vụ chính!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK