Nếu đại lượng y phụ thuộc vào đại lượng thay đổi x sao cho với mỗi giá trị của x ta luôn xác định được chỉ một giá trị tương ứng của y thì y được gọi là hàm số của x và x gọi là biến cố.
Cho hàm số \(y = {x^2} + 3x + 2.\) Tính \(f( - 1),\,f(0),\,f\left( {\frac{1}{2}} \right)\).
Ta có \(f(x) = {x^2} + 3x + 2.\) Do đó
\(f( - 1) = {( - 1)^2} + 3( - 1) + 2 = 1 - 3 + 2 = 0\)
\(f(0) = {0^2} + 3.0 + 2 = 2\)
\(f\left( {\frac{1}{2}} \right) = {\left( {\frac{1}{2}} \right)^2} + 3.\frac{1}{2} + 2 = \frac{1}{4} + \frac{3}{2} + 2 = \frac{{1 + 6 + 8}}{4} = \frac{{15}}{4} = 3\frac{3}{4}\).
Cho các hàm số: \({f_1}(x) = 3{x^2},{f_2}(x) = - 5x,\,{f_3}(x) = 2\)
a. Tính \({f_1}\left( {\frac{1}{3}} \right),{f_2}\left( {\frac{1}{5}} \right),{f_3}(3)\).
b. Tính \({f_1}(0) + {f_2}(1) + {f_3}( - 1)\).
a.
\(\begin{array}{l}{f_1}\left( {\frac{1}{3}} \right) = 3.{\left( {\frac{1}{3}} \right)^2} = 3.\frac{1}{9} = \frac{1}{3}\\{f_2}\left( {\frac{1}{5}} \right) = - 5.\left( {\frac{1}{5}} \right) = - 1\\{f_3}(3) = 2\end{array}\).
b. \({f_1}(0) + {f_2}(1) + {f_3}( - 1) = {3.0^2} + ( - 5).1 + 2 = - 5 + 2 = - 3\).
Cho hàm số f được cho bởi công thức sau: \(f(x) = \left\{ \begin{array}{l}x + 1\,\,\,\,\,\,\,neu\,\,x \ge 0\\1 - 2x\,\,\,neu\,\,\,x < 0\,\end{array} \right.\) . Tính \(f(2),\,\,f( - 2),\,f(0),\,\,f\left( { - \frac{1}{2}} \right)\).
Ta có:
2 > 0 nên f(2) = 2 + 1 = 3
-2 < 0 nên f(-2) = 1 – 2.(-2) = 5
f(0)= 0 + 1 = 1
\( - \frac{1}{2} < 0\) nên \(f\left( { - \frac{1}{2}} \right) = 1 + 2.\left( { - \frac{1}{2}} \right) = 2\).
Hàm số y = f(x) được cho bởi công thức:
a. \(y = \frac{{10}}{x}\). b. \(y = 2x\).
Hãy tìm các giá trị của x sao cho vế phải của công thức là biểu thức có nghĩa.
a. Với \(y = \frac{{10}}{x},\)để cho vế phải của công thức có nghĩa thì vế phải có mẫu khác 0. Vậy \(x \ne 0.\)
b. Với công thức\(y = 2x\), vế phải của công thức luôn có nghĩa với mọi giá trị của x. Vậy \(x \in R\).
Cho hàm số y =-3x. Tìm các giá trị của x sao cho:
a. y nhận giá trị dương.
b. y nhận giá trị âm.
a. y nhận giá trị dương thì ta có:
y = -3x > 0 suy ra x < 0.
b. y nhận giá trị âm với x > 0.
Cho hàm số f được cho bởi các công thức như sau:
\(f(x) = \left\{ \begin{array}{l}3x - 1\,\,\,\,\,\,\,\,\,\,voi\,\,\,\,\,\,x \ge \frac{1}{3}\\1 - 3x\,\,\,\,\,\,\,\,\,\,voi\,\,\,\,\,\,x < \frac{1}{3}\end{array} \right.\,\,\,\,\,\,\)
a. Hàm số f có thể được viết gọn bằng biểu thức nào?
b. Tính \(f( - 2),f(2),f\left( { - \frac{1}{4}} \right),f\left( {\frac{1}{4}} \right)\).
a. Biểu thức xác định hàm số f. Có thể được viết gọn như sau: f(x)=|3x -1|.
b.
\(\begin{array}{l}f( - 2) = \left| {3.( - 2) - 1} \right| = \left| { - 7} \right| = 7\\f(2) = \left| {3.2 - 1} \right| = \left| 5 \right| = 5\\f\left( { - \frac{1}{4}} \right) = \left| {3.\left( { - \frac{1}{4}} \right) - 1} \right| = \left| { - 1\frac{3}{4}} \right| = 1\frac{3}{4}\\f\left( {\frac{1}{4}} \right) = \left| {3.\frac{1}{4} - 1} \right| = \left| { - \frac{1}{4}} \right| = \frac{1}{4}\end{array}\)
Cho hàm số y = ax. Chứng minh rằng:
a. Với các số \({x_1},{x_2}\) là hai giá trị của x ta có \({y_1},{y_2}\)là hai giá trị tương ứng của y thì \(f({x_1} + {x_2}) = f({x_1}) + f({x_2})\).
b. Với \(k \in Q\) thì f(kx) =k.f(x) với mọi \(x \in Q\).
a. Ta có : \(f({x_1} + {x_2}) = a({x_1} + {x_2}) = a{x_1} + a{x_2}\)
Mà \(f({x_1}) = a{x_1},\,\,f({x_2}) = a{x_2}\,\,\).
Do đó \(f({x_1} + {x_2}) = f({x_1}) + f({x_2})\).
b. Ta có \(f(kx) = a(kx) = (ak)x\)
\( = k({\rm{ax}}) = kf(x)\).
Qua bài giảng Hàm số này, các em cần hoàn thành 1 số mục tiêu mà bài đưa ra như :
Các em có thể hệ thống lại nội dung kiến thức đã học được thông qua bài kiểm tra Trắc nghiệm Toán 7 Bài 5 cực hay có đáp án và lời giải chi tiết.
Cho hàm số y=f(x) có các giá trị tương ứng cho bởi bảng sau:
x -2 -1 0 1 2 f(x) 6 4 2 0 0Tính f(-2)
Cho các công thức y - 3 =x, -2y = x, y2 = x. Có bao nhiêu công thức chứng tỏ y là hàm số của x
Câu 2- Câu 5: Xem thêm phần trắc nghiệm để làm thử Online
Các em có thể xem thêm phần hướng dẫn Giải bài tập Toán 7 Bài 5 để giúp các em nắm vững bài học và các phương pháp giải bài tập.
Bài tập 24 trang 63 SGK Toán 7 Tập 1
Bài tập 25 trang 64 SGK Toán 7 Tập 1
Bài tập 26 trang 64 SGK Toán 7 Tập 1
Bài tập 27 trang 64 SGK Toán 7 Tập 1
Bài tập 28 trang 64 SGK Toán 7 Tập 1
Bài tập 29 trang 64 SGK Toán 7 Tập 1
Bài tập 30 trang 64 SGK Toán 7 Tập 1
Bài tập 31 trang 65 SGK Toán 7 Tập 1
Trong quá trình học tập nếu có thắc mắc hay cần trợ giúp gì thì các em hãy comment ở mục Hỏi đáp, Cộng đồng Toán HOC247 sẽ hỗ trợ cho các em một cách nhanh chóng!
Chúc các em học tập tốt và luôn đạt thành tích cao trong học tập!
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 7 - Năm thứ hai ở cấp trung học cơ sở, một cuồng quay mới lại đến vẫn bước tiếp trên đường đời học sinh. Học tập vẫn là nhiệm vụ chính!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK