Bài 7 trang 123 SGK Hình học 12 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Bài 7. Cho hình trụ có bán kính R và đường cao \(R\sqrt 2 \). Gọi AB và CD là hai đường kính thay đổi của hai đường tròn đáy mà AB vuông góc với CD.
a) Chứng minh ABCD là tứ diện đều.
b) Chứng minh rằng các đường thẳng AC, AD, BC, BD luôn tiếp xúc với một mặt trụ cố định (tức là khoảng cách giữa mỗi đường thẳng đó và trục của mặt trụ bằng bán kính mặt trụ).

Hướng dẫn giải


a) Gọi A’, B’ lần lượt là hình chiếu của A, B trên mặt phẳng chứa đường tròn đáy có đường kính CD, khi đó A’, B’ nằm trên đường tròn đáy.

Ta có: \(A'B' \bot CD\) nên A’CB’D là hình vuông có đường chéo CD = 2R nên \(A'C = R\sqrt 2 ,\) mà \(AA' = R\sqrt 2 \) nên ta suy ra AC = 2R.

Tương tự AD = BC = BD = 2R. Vậy ABCD là tứ diện đều.

b) Gọi O, O’ lần lượt là tâm của hai đường tròn đáy.
Ta có \(d\left( {OO',AC} \right) = d\left( {OO',\left( {AA'C} \right)} \right) = O'H\) (với H là trung điểm của A’C).
Vậy \(d = O'H = {{R\sqrt 2 } \over 2}.\)
Tương tự khoảng cách giữa mỗi đường thẳng BC, BD và OO’ đều bằng \({{R\sqrt 2 } \over 2}\). Vậy các cạnh AC, AD, BC, BD đều tiếp xúc với mặt trụ có trục OO’ và bán kính \({{R\sqrt 2 } \over 2}\).

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 12

Lớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK