Bài 11 trang 124 SGK Hình học 12 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Bài 11. Trong không gian Oxyz, cho đường thẳng \(\Delta \) có phương trình 

\(\left\{ \matrix{
x = 1 + at \hfill \cr
y = 1 + bt \hfill \cr
z = 5 + ct \hfill \cr} \right.\) trong đó a, b, c thay đổi sao cho \({c^2} = {a^2} + {b^2}.\)

a) Chứng minh rằng đường thẳng \(\Delta \) đi qua một điểm cố định, góc giữa \(\Delta \) và Oz là không đổi.
b) Tìm quỹ tích các giao điểm của \(\Delta \) và mp(Oxy).

Hướng dẫn giải

a) \(\Delta \) đi qua điểm A(1; 1; 5) cố định.
\(\Delta \) có vectơ chỉ phương \(\overrightarrow u  = \left( {a,b,c} \right).\)
Gọi \(\varphi \) là góc giữa \(\Delta \) và trục Oz. Ta có:
\(\cos \varphi  = \left| {\cos \left( {\overrightarrow u ,\overrightarrow k } \right)} \right| = \left| {{c \over {\sqrt {{a^2} + {b^2} + {c^2}} }}} \right| = \left| {{c \over {c\sqrt 2 }}} \right| = {{\sqrt 2 } \over 2}.\)
Suy ra \(\varphi  = {45^0}.\)
b) Vì \({c^2} = {a^2} + {b^2}\) nên \(c \ne 0\) (vì nếu c = 0 thì a = b = 0).
Gọi M(x, y, z) là giao điểm của \(\Delta \) và mp(Oxy) thì (x, y, z) thỏa mãn hệ phương trình:

\(\left\{ \matrix{
x = 1 + at \hfill \cr
y = 1 + bt \hfill \cr
z = 5 + ct \hfill \cr
z = 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x - 1 = at \hfill \cr
y - 1 = bt \hfill \cr
t = - {5 \over c} \hfill \cr
z = 0 \hfill \cr} \right..\)

Từ đó suy ra \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} = \left( {{a^2} + {b^2}} \right).{{25} \over {{c^2}}} = 25\) và z = 0.
Vậy quỹ tích điểm M là đường tròn tâm I(1; 1; 0) bán kính bằng 5 và nằm trong mp(Oxy).

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 12

Lớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK