Bài 10. Trong không gian tọa độ Oxyz, cho hai điểm A(1; -1; 2), B(2; 0; 1).
a) Tìm quỹ tích các điểm M sao cho \(M{A^2} - M{B^2} = 2.\)
b) Tìm quỹ tích các điểm N sao cho \(N{A^2} + N{B^2} = 3.\)
c) Tìm quỹ tích các điểm cách đều hai mặt phẳng (OAB) và (Oxy).
a) Giả sử M(x, y, z) ta có: \(M{A^2} - M{B^2} = 2.\)
\(\eqalign{
& \Leftrightarrow {\left( {1 - x} \right)^2} + {\left( { - 1 - y} \right)^2} + {\left( {2 - z} \right)^2} - {\left( {2 - x} \right)^2} - {y^2} - {\left( {1 - z} \right)^2} = 2 \cr
& \Leftrightarrow 2x + 2y - 2z - 1 = 0. \cr} \)
Vậy quỹ tích điểm M là mặt phẳng có phương trình \(2x + 2y - 2z - 1 = 0.\)
b) Giả sử N(x, y, z) ta có: \(N{A^2} + N{B^2} = 3.\)
\(\eqalign{
& \Leftrightarrow {\left( {1 - x} \right)^2} + {\left( { - 1 - y} \right)^2} + {\left( {2 - z} \right)^2} + {\left( {2 - x} \right)^2} + {y^2} + {\left( {1 - z} \right)^2} = 3 \cr
& \Leftrightarrow {x^2} + {y^2} + {z^2} - 3x + y - 3z + 4 = 0 \cr
& \Leftrightarrow {\left( {x - {3 \over 2}} \right)^2} + {\left( {y + {1 \over 2}} \right)^2} + {\left( {z - {3 \over 2}} \right)^2} = {3 \over 4}. \cr} \)
Vậy quỹ tích các điểm N là mặt cầu có tâm \(I\left( {{3 \over 2}; - {1 \over 2};{3 \over 2}} \right)\), bán kính \({{\sqrt 3 } \over 2}.\)
c) Mặt phẳng (OAB) đi qua O, có vectơ pháp tuyến \(\overrightarrow n = \left[ {\overrightarrow {OA} ,\overrightarrow {OB} } \right] = \left( { - 1;3;2} \right)\) nên có phương trình: \( - x + 3y + 2z = 0.\)
Mp(Oxy) có phương trình z = 0.
Điểm M(x, y, z) cách đều mp(OAB) và mp(Oxy) khi và chỉ khi:
\(\eqalign{
& {{\left| { - x + 3y + 2z} \right|} \over {\sqrt {1 + 9 + 4} }} = \left| z \right| \Leftrightarrow - x + 3y + 2z = \pm \sqrt {14} z \cr
& \Leftrightarrow x - 3y + \left( { \pm \sqrt {14} - 2} \right)z = 0. \cr} \)
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK