Gọi (C) là đồ thị của hàm số y = ln x và (D) là một tiếp tuyến bất kỳ của (C).
Chứng mình rằng trên khoảng (0, +∞); (C) nằm ở phía dưới đường thẳng (D).
Giả sử M(x0, lnx0) ∈ (C) (x0 > 0 )
Ta có: \(y' = {1 \over x}\)
Tiếp tuyến của (C) tại M có phương trình là:
\(y = {1 \over {{x_0}}}(x - {x_o}) + \ln {x_0}\)
Vậy với mọi x ∈ (0,+∞), ta cần chứng minh:
\(\eqalign{
& {1 \over {{x_0}}}(x - {x_0}) + \ln {x_0} \ge \ln x \cr
& \Leftrightarrow {x \over {{x_0}}} - 1 - \ln {x \over {{x_0}}} \ge 0 \cr} \)
Đặt \(t = {x \over {{x_0}}} > 0\)
Xét hàm số \(g(t) = t – \ln t\) với t > 0
\(\eqalign{
& g' = 1 - {1 \over t} = {{t - 1} \over t} \cr
& g' = 0 \Leftrightarrow y = t = 1 \cr} \)
Bảng biến thiên
Từ bảng biến thiên ta có \(g(t) ≥ 1\) với mọi \(t \in (0, +∞)\)
\( \Rightarrow t - \ln t - 1 \ge 0 \Rightarrow {x \over {{x_0}}} - 1 - \ln {x \over {{x_0}}} \ge 0\) với mọi \(x > 0\)
Vậy trên \((0; +∞)\) (C) nằm phía dưới đường thẳng (D)
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK