Bài 71. Chu vi của một tam giác là 16cm, độ dài một cạnh tam giác là 6cm. Tìm độ dài hai cạnh còn lại của tam giác sao cho tam giác có diện tích lớn nhât.
Hướng dẫn: Có thể áp dụng công thức Hê-rông để tính diện tích tam giác: Nếu tam giác ABC có độ dài các cạnh là a, b, c thì diện tích của nó là: \(S = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)} \) (p là nửa chu vi của tam giác.)
Gọi x, y là độ dài hai cạnh còn lại của tam giác.
Ta có: \(x + y = 16 - 6 = 10,\,x > 0,\,y > 0\)
Diện tích tam giác là: \(S = \sqrt {p\left( {p - 6} \right)\left( {p - x} \right)\left( {p - y} \right)} = \sqrt {8.2\left( {8 - x} \right)\left( {8 - y} \right)} = 4\sqrt {\left( {8 - x} \right)\left( {8 - y} \right)} \)
Thay y= 10- x , ta được \(S = 4\sqrt {\left( {8 - x} \right)\left( {x - 2} \right)} = 4\sqrt {{-x^2} + 10x - 16} \,\,\,\left( {0 < x < 10} \right)\)
S đạt gía trị lớn nhất trên khoảng (0;10) khi và chỉ khi hàm số \(f\left( x \right) = - {x^2} + 10x - 16\) đạt giá trị lớn nhất trên khoảng (0;10).
\(f'\left( x \right) = - 2x + 10;\,f'\left( x \right) = 0 \Leftrightarrow x = 5;\,f\left( 5 \right) = 9\)
Tam giác có diện tích lớn nhất khi x = 5 (cm) và y= 5 (cm)
\(\mathop {\max }\limits_{x \in \left( {0;10} \right)} f\left( x \right) = f\left( 5 \right) = 9\)
Khi đó diện tích tam giác là: \(S = 4\sqrt 9 = 12\left( {c{m^2}} \right)\)
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK