Cho hình chóp tam giác \(S.ABC\) có \(AB = 5a, BC = 6a, CA = 7a\). Các mặt bên \(SAB, SBC, SCA\) tạo với đáy một góc \(60^0\). Tính thể tích của khối chóp đó.
Hình chóp có các cạnh bên tạo với đáy các góc bằng nhau có hình chiếu của đỉnh trùng với tâm đường tròn nội tiếp đáy.
Áp dụng công thức tính thể tích \({V_{chóp}} = \frac{1}{3}Sh\) trong đó \(S\) là diện tích đáy và \(h\) là chiều cao của khối chóp.
Lời giải chi tiết
Kẻ \(SH \bot (ABC)\) và từ \(H\) kẻ \(HI \bot AB, HJ \bot BC, HK \bot CA\).
Từ định lý ba đường vuông góc, ta suy ra:
\(SI \bot AB, SJ \bot BC, SK \bot AC\) do đó:
\(\begin{array}{l}
\widehat {\left( {\left( {SAB} \right);\left( {ABC} \right)} \right)} = \widehat {SIH} = {60^0}\\
\widehat {\left( {\left( {SBC} \right);\left( {ABC} \right)} \right)} = \widehat {SJH} = {60^0}\\
\widehat {\left( {\left( {SAC} \right);\left( {ABC} \right)} \right)} = \widehat {SKH} = {60^0}
\end{array}\)
Từ đây ta có: \(△SIH = △SJH = △SKH\) (g.g)
\( \Rightarrow IH = JH = KH\)
\( \Rightarrow H\) là tâm đường tròn nội tiếp \(△ABC\).
Tam giác \(ABC\) có chu vi: \(2p = AB + BC + CA = 18a \Rightarrow p = 9a\)
Theo công thức Hê-rông, ta có: \({S_{ABC}} = \sqrt {p\left( {p - AB} \right)\left( {p - AC} \right)\left( {p - BC} \right)}\)
\( = \sqrt {9a.4a.2a.3a} = 6{a^2}\sqrt 6 \)
Bán kính của đường tròn nội tiếp tam giác \(ABC\):
\(IH = r = {{{S_{ABC}}} \over p} = {{6{a^2}\sqrt 6 } \over {9a}} \Rightarrow IH = {{2a\sqrt 6 } \over 3}\)
Xét tam giác vuông SHI có: \(SH = r . tan60^0\) = \({{2a\sqrt 6 } \over 3}.\sqrt 3 = 2a\sqrt 2 \)
Vậy thể tích khối chóp: \({V_{S.ABC}} = {1 \over 3}.2a\sqrt 2 .6{a^2}\sqrt 6 = 8{a^3}\sqrt 3 \)
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK