Bài 11 trang 27 SGK Hình học 12

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Cho hình hộp \(ABCD.A'B'C'D'\). Gọi \(E\) và \(F\) theo thứ tự là trung điểm của các cạnh \(BB'\) và \(DD'\). Mặt phẳng \((CEF)\) chia khối hộp trên làm hai khối đa diện. Tính tỉ số thể tích của hai khối đa diện đó.

Hướng dẫn giải

+) Xác định thiết diện của hình chóp khi cắt bởi mặt phẳng (CEF).

+) Phân chia và lắp ghép các khối đa diện.

Lời giải chi tiết

Ta xác định thiết diện của hình hộp \(ABCD.A'B'C'D'\) khi cắt bởi \((CEF)\). Mặt phẳng \((CEF)\) chứa đường thẳng \(EF\) mà \(E\) là trung điểm của \(BB', F\) là trung điểm của \(CC'\).

\(O \in EF \Rightarrow O \in CEF \Rightarrow CO \subset \left( {CEF} \right)\) 

\(A' \in CO \Rightarrow A' \in \left( {CEF} \right)\)

Ta dễ dàng nhận xét rằng thiết diện chính là hình bình hành \(CEA'F\).

Mặt phẳng (CEA'F) chia khối hộp thành 2 phần: ABCD.A'ECF  (\(V_1\)) và A'B'C'D'.CEA'F (\(V_2\))

Qua \(EF\) ta dựng một mặt phẳng song song với đáy hình hộp, mặt phẳng này cắt \(AA'\) ở \(P\) và cắt \(CC'\) ở \(Q\).

Ta có:

\(\begin{array}{l}
{V_{ABCD.A'ECF}} = {V_{ABCD.EFP}} + {V_{A'.PEF}}\\
{V_{A'PEF}} = {V_{C.QEF}}\\
\Rightarrow {V_{ABCD.A'ECF}} = {V_{ABCD.EFP}} + {V_{C.QEF}} = {V_{ABCD.EPFQ}} = \frac{1}{2}V
\end{array}\)

Do đó \({V_1} = {V_2} = \frac{1}{2}V \Rightarrow \frac{{{V_1}}}{{{V_2}}} = 1\).

Chú ý: Có thể lí luận như sau: Giao điểm \(O\) của các đường chéo của hình hộp là tâm đối xứng của hình hộp, do đó mặt phẳng \((CEF)\) chứa điểm \(O\) nên chia hình hộp thành hai hình đối xứng với nhau qua điểm \(O\). Vậy hai hình này là hai hình bằng nhau và có thể tích bằng nhau.

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 12

Lớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK