Cho hình chóp \(S.ABC\). Trên các đoạn thẳng \(SA, SB, SC\) lần lượt lấy ba điểm \(A’, B’, C’\) khác với \(S\). Chứng minh rằng
\({{{V_{S.A'B'C'}}} \over {{V_{S.ABC}}}} = {{SA'} \over {SA}} \cdot {{SB'} \over {SB}} \cdot {{SC'} \over {SC}}\)
+) Gọi h và h' lần lượt là chiều cao hạ từ A và A' đến \((BCD)\), dựa vào định lí Vi-et tính tỉ số \(\frac{h'}{{h}}\).
+) Sử dụng công thức tính diện tích \({S_{\Delta SB'C'}} = \frac{1}{2}SB.SC.\sin \widehat {BSC}\) tính diện tích tam giác \(SB'C'\), tương tự tính diện tích tam giác\(SBC\), sau đó suy ra tỉ số \(\frac{{{S_{\Delta SB'C'}}}}{{{S_{\Delta SBC}}}}\).
+) Sử dụng công thức tính thể tích \(V = \frac{1}{3}S.h\) lập tỉ số thể tích S.A'B'C' và S.ABC, rút gọn và suy ra kết quả.
Lời giải chi tiết
Gọi \(h\) và \(h’\) lần lượt là chiều cao hạ từ \(A, A’\) đến mặt phẳng \((SBC)\).
Gọi \(S_1\) và \(S_2\) theo thứ tự là diện tích các tam giác \(SBC\) và \(SB’C’\).
Khi đó ta có \({{h'} \over h} = {{SA'} \over {SA}}\)
và \(\frac{{{S_{SB'C'}}}}{{{S_{SBC}}}} = \frac{{\frac{1}{2}SB'.SC'.\sin \widehat {BSC}}}{{\frac{1}{2}SB.SC.\sin \widehat {BSC}}} = \frac{{SB'}}{{SB}}.\frac{{SC'}}{{SC}}\).
Suy ra \({{{V_{S.A'B'C'}}} \over {{V_{S.ABC}}}} = {{{V_{A'.SB'C'}}} \over {{V_{A.SBC}}}} = {{{1 \over 3}h'{S_2}} \over {{1 \over 3}h{S_1}}} = {{SA'} \over {SA}} \cdot {{SB'} \over {SB}} \cdot {{SC'} \over {SC}}\)
Đó là điều phải chứng minh.
Chú ý: Từ nay và sau chúng ta được sử dụng bài tập này như một kết quả và không cần chứng minh lại.
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK