Tính thể tích khối tứ diện đều cạnh \(a\).
+) Gọi \(AH\) là đường cao hạ từ đỉnh A của tứ diện đều \(ABCD\) \(\left({H \in (BCD)} \right)\).
+) Do tứ diện ABCD đều, chứng minh H là trong tâm tam giác \(ABC\).
+) Sử dụng định lí Pytago tính độ dài \(AH\).
+) Áp dụng công thức tính thể tích: \({V_{ABCD}} = \frac{1}{3}AH.{S_{BCD}}\).
Lời giải chi tiết
Cho tứ diện đều \(ABCD\). Hạ \(AH \bot \left( {BCD} \right)\)
Dễ dàng chứng minh được \({\Delta _v}AHB = {\Delta _v}AHC = {\Delta _v}AHD\,\,\left( {ch - cgv} \right) \Rightarrow HB = HC = HD,\) do đó H là tâm đường tròn ngoại tiếp tam giác \(BCD\).
Do \(BCD\) là tam giác đều nên \(H\) là trọng tâm của tam giác \(BCD\).
Do đó \(BH = {2 \over 3}.{{\sqrt 3 } \over 2}a = {{\sqrt 3 } \over 3}a\)
Áp dụng định lí Pitago trong tam giác vuông \(ABH\) ta có: \(A{H^2} = A{B^2} - B{H^2} = {a^2} - \frac{{{a^2}}}{3} = \frac{{2{a^2}}}{3} \Rightarrow AH = \frac{{a\sqrt 6 }}{3}\).
Do tam giác \(BCD\) đều cạnh \(a\) nên: \({S_{BCD}} = \frac{{{a^2}\sqrt 3 }}{4}\)
Vậy \({V_{ABCD}} = \frac{1}{3}AH.{S_{BCD}} = \frac{1}{3}.\frac{{a\sqrt 6 }}{3}.\frac{{{a^2}\sqrt 3 }}{4} = \frac{{{a^3}\sqrt 3 }}{{12}}.\)
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK