Tính thể tích khối bát diện đều cạnh \(a\).
+) Chia khối bát diện đều thành hai khối chóp tứ giác đều.
+) Xác định chiều cao và áp dụng công thức tính thể tích khối chóp: \(V = \frac{1}{3}h.{S_d}\)
Lời giải chi tiết
Chia khối tám mặt đều cạnh \(a\) thành hai khối chóp tứ giác đều cạnh \(a\) là \(E.ABCD\) và \(F.ABCD\).
Xét chóp tứ giác đều \(E.ABCD\). Gọi \(H\) là tâm hình vuông \(ABCD\) ta có: \(EH \bot \left( {ABCD} \right)\).
Vì \(ABCD\) là hình vuông cạnh \(a\) nên \(AC = a\sqrt 2 \Rightarrow AH = \frac{1}{2}AC = \frac{{a\sqrt 2 }}{2}\).
Áp dụng định lí Pitago trong tam giác vuông \(EHA\) có: \(E{H^2} = E{A^2} - A{H^2} = {a^2} - {\left( {\frac{{a\sqrt 2 }}{2}} \right)^2} = \frac{{a\sqrt 2 }}{2}\).
\( \Rightarrow {V_{E.ABCD}} = \frac{1}{3}EH.{S_{ABCD}} = \frac{1}{3}.\frac{{a\sqrt 2 }}{2}.{a^2} = \frac{{{a^3}\sqrt 2 }}{6}\).
Vậy thể tích khối tám mặt đều cạnh \(a\) là: \(V = 2.{V_{E.ABCD}}= {a^3}{{\sqrt 2 } \over 3}\).
Chú ý: Hình chóp đa giác đều có hình chiếu của đỉnh trên mặt đáy trùng với tâm mặt đáy.
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK