Tìm nguyên hàm của các hàm số sau?
a) \(f(x) = \frac{x+\sqrt{x}+1}{^{\sqrt[3]{x}}}\) ; b) \( f(x)=\frac{2^{x}-1}{e^{x}}\)
c) \(f(x) = \frac{1}{sin^{2}x.cos^{2}x}\); d) \(f(x) = sin5x.cos3x\)
e) \(f(x) = tan^2x\) g) \(f(x) = e^{3-2x}\)
h) \(f(x) =\frac{1}{(1+x)(1-2x)}\) ;
+) Biến đổi các biểu thức cần tính nguyên hàm về các hàm số dạng cơ bản.
+) Sau đó sử dụng các công thức nguyên hàm cơ bản để làm bài toán:
\(\begin{array}{l}
\int {{x^n}dx = \frac{1}{{n + 1}}{x^{n + 1}} + C;\;\;\int {\frac{1}{x}dx} = \ln \left| x \right| + C;\;\;} \\
\int {{e^x}dx = {e^x} + C;\;\;\int {\cos xdx = - \sin x + C;} } \\
\int {\sin xdx = - \cos x + C} ;\;\;\int {\frac{1}{{{{\cos }^2}x}}dx = \tan x + C;} \\
\int {\frac{1}{{{{\sin }^2}x}}dc = - \cot x + C....}
\end{array}\)
Lời giải chi tiết
a) Điều kiện \(x>0\). Thực hiện chia tử cho mẫu ta được:
\(f(x) = \frac{x+x^{\frac{1}{2}}+1}{x^{\frac{1}{3}}} \\= x^{1-\frac{1}{3}}+ x^{\frac{1}{2}-\frac{1}{3}}+ x^{-\frac{1}{3}}\\ = x^{\frac{2}{3}}+ x^{\frac{1}{6}} + x^{-\frac{1}{3}}.\)
\(\Rightarrow ∫f(x)dx = ∫(x^{\frac{2}{3}}+ x^{\frac{1}{6}} + x^{-\frac{1}{3}})dx \\= \frac{3}{5}x^{\frac{5}{3}}+ \frac{6}{7}x^{\frac{7}{6}}+\frac{3}{2}x^{\frac{2}{3}} +C.\)
\(\begin{array}{l}b)\;\;f\left( x \right) = \frac{{{2^x} - 1}}{{{e^x}}} = {\left( {\frac{2}{e}} \right)^x} - {e^{ - x}}.\\ \Rightarrow F\left( x \right) = \int {f\left( x \right)dx} = \int {\left( {{{\left( {\frac{2}{e}} \right)}^x} - {e^{ - x}}} \right)} dx\\= \frac{{{{\left( {\frac{2}{e}} \right)}^x}}}{{\ln \left( {\frac{2}{e}} \right)}} + {e^{ - x}} + C = \frac{{{2^x}}}{{{e^x}\left( {\ln 2 - 1} \right)}} + \frac{1}{{{e^x}}} + C\\= \frac{{{2^x} + \ln 2 - 1}}{{{e^x}\left( {\ln 2 - 1} \right)}} + C.\end{array}\)
\(\begin{array}{l}c)\;\;f\left( x \right) = \frac{1}{{{{\sin }^2}x.{{\cos }^2}x}} = \frac{1}{{{{\sin }^2}x}} + \frac{1}{{{{\cos }^2}x}}.\\\Rightarrow F\left( x \right) = \int {f\left( x \right)dx = \int {\left( {\frac{1}{{{{\sin }^2}x}} + \frac{1}{{{{\cos }^2}x}}} \right)} } dx\\ = - \cot x + \tan x + C = \frac{{\sin x}}{{\cos x}} - \frac{{\cos x}}{{\sin x}} + C\\ = \frac{{{{\sin }^2}x - {{\cos }^2}x}}{{\sin x.\cos x}} + C = \frac{{ - \cos 2x}}{{\frac{1}{2}\sin 2x}} + C = - 2\cot2 x + C.\end{array}\)
d) Áp dụng công thức biến tích thành tổng:
\(\begin{array}{l}f\left( x \right) = \sin 5x.\cos 3x = \frac{1}{2}\left( {\sin 8x + \sin 2x} \right).\\\Rightarrow F\left( x \right) = \int {f\left( x \right)dx} = \int {\frac{1}{2}\left( {\sin 8x + \sin 2x} \right)dx} \\ = \frac{1}{2}\left( { - \frac{1}{8}\cos 8x - \frac{1}{2}\cos 2x} \right) + C\\ = - \frac{1}{4}\left( {\frac{1}{4}\cos 8x + \cos 2x} \right) + C.\end{array}\)
\(\begin{array}{l}e)\;\;f\left( x \right) = {\tan ^2}x = \frac{1}{{{{\cos }^2}x}} - 1\\\Rightarrow F\left( x \right) = \int {f\left( x \right)dx} = \int {\left( {\frac{1}{{{{\cos }^2}x}} - 1} \right)dx}\\ = \tan x - x + C.\end{array}\)
\(\begin{array}{l}g)\;\;f\left( x \right) = {e^{3 - 2x}}.\\\Rightarrow F\left( x \right) = \int {f\left( x \right)dx = } \int {{e^{3 - 2x}}dx} \\= - \frac{1}{2}\int {{e^{3 - 2x}}\left( {3 - 2x} \right)'dx} = - \frac{1}{2}{e^{3 - 2x}} + C.\end{array}\)
h) Ta có : \(f\left( x \right) = \frac{1}{{\left( {1 + x} \right)\left( {1 - 2x} \right)}} = \frac{1}{{3\left( {x + 1} \right)}} + \frac{2}{{3\left( {1 - 2x} \right)}}.\)
\(\Rightarrow \int \frac{dx}{(1+x)(1-2x)}=\frac{1}{3}\int (\frac{1}{1+x}+\frac{2}{1-2x})dx \\= \frac{1}{3}(ln\left | 1+x \right |)-ln\left | 1-2x \right |)+C\\ = \frac{1}{3}ln\left | \frac{1+x}{1-2x} \right | +C.\).
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK