Bài 9 trang 177 SGK Đại số và Giải tích 11

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Cho hai hàm số: \(y = {1 \over {x\sqrt 2 }};y = {{{x^2}} \over {\sqrt 2 }}\) . Viết phương trình tiếp tuyến với đồ thị của mỗi hàm số đã cho tại giao điểm của chúng. Tính góc giữa hai tiếp tuyến kể trên.

Hướng dẫn giải

+) Giải phương trình hoành độ giao điểm, xác định hoành độ giao điểm.

+) Phương trình tiếp tuyến của đồ thị hàm số \(y = f\left( x \right)\) tại điểm có hoành độ \(x_0\) là: \(y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + f\left( {{x_0}} \right)\).

+) Nhận xét về các hệ số góc của hai tiếp tuyến trên.

Lời giải chi tiết

\({C_1}:y = f(x) = {1 \over {x\sqrt 2 }} \Rightarrow f'(x) =  - {1 \over {{x^2}\sqrt 2 }}\)

\({C_2}:y = g(x) = {{{x^2}} \over {\sqrt 2 }} \Rightarrow g'(x) = {{2x} \over {\sqrt 2 }} = x\sqrt 2 \)

Phương trình hoành độ giao điểm của (C1) và (C2) là:

\({1 \over {x\sqrt 2 }} = {{{x^2}} \over {\sqrt 2 }} \Leftrightarrow \left\{ \matrix{
x \ne 0 \hfill \cr
{x^3} = 1 \hfill \cr} \right. \Leftrightarrow x = 1 \Rightarrow y = {1 \over {\sqrt 2 }} = {{\sqrt 2 } \over 2}\)

Vậy giao điểm của (C1) và (C2) là \(A(1,{{\sqrt 2 } \over 2})\)

_ Phương trình tiếp tuyến của (C1) tại điểm A là:

\(\eqalign{
& y - {{\sqrt 2 } \over 2} = f'(1)(x - 1) \cr&\Leftrightarrow y - {{\sqrt 2 } \over 2} = - {1 \over {\sqrt 2 }}(x - 1) \cr
& \Leftrightarrow y = - {x \over {\sqrt 2 }} + \sqrt 2 \cr} \)

Tiếp tuyến này có hệ số góc \(k_1= {{ - 1} \over {\sqrt 2 }}\)

_ Phương trình tiếp tuyến của (C2) tại điểm \(A\) là:

\(\eqalign{
& y - {{\sqrt 2 } \over 2} = g'(1)(x - 1) \Leftrightarrow y - {{\sqrt 2 } \over 2} = \sqrt 2 (x - 1) \cr
& \Leftrightarrow y = x\sqrt 2 - {{\sqrt 2 } \over 2} \cr} \)

Tiếp tuyến này có hệ số góc \(k_2= \sqrt 2\)

_ Ta có: \({k_1}.{k_2} = ( - {1 \over {\sqrt 2 }})(\sqrt 2 ) =  - 1\)

⇒ Hai tiếp tuyến nói trên vuông góc với nhau

⇒ góc giữa hai tiếp tuyến bằng \(90^0\).

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK