Viết phương trình tiếp tuyến:
a) Của hypebol \(y = {{x + 1} \over {x - 1}}\) tại \(A (2, 3)\)
b) Của đường cong \(y = x^3+ 4x^2– 1\) tại điểm có hoành độ \(x_0= -1\)
c) Của parabol \(y = x^2– 4x + 4\) tại điểm có tung độ \(y_0= 1\)
Phương trình tiếp tuyến của đồ thị hàm số \(y = f\left( x \right)\) tại điểm có hoành độ \(x_0\) là: \(y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + f\left( {{x_0}} \right)\).
Lời giải chi tiết
a) Ta có: \(y' = f'(x) = {{ - 2} \over {{{(x - 1)}^2}}} \Rightarrow f'(2) = {{ - 2} \over {{{(2 - 1)}^2}}} = - 2\)
Suy ra phương trình tiếp tuyến cần tìm là:
\(y = - 2\left( {x - 2} \right) + 3 = - 2x + 7\)
b) Ta có: \(y’ = f’(x) = 3x^2+ 8x ⇒ f’(-1) = 3 – 8 = -5\)
Mặt khác: \(x_0= -1 ⇒ y_0= -1 + 4 – 1 = 2\)
Vậy phương trình tiếp tuyến cần tìm là:
\(y – 2 = -5 (x + 1) ⇔ y = -5x – 3\)
c) Ta có:
\(y_0= 1 ⇒ 1 = x_0^2- 4x_0+ 4 ⇒ x_0^2– 4x_0+ 3 = 0\)
\( \Leftrightarrow \left[ \begin{array}{l}
{x_0} = 1\\
{x_0} = 3
\end{array} \right.\)
\(f’(x) = 2x – 4 ⇒ f’(1) = -2\) và \(f’(3) = 2\)
Vậy có hai tiếp tuyến cần tìm có phương trình là:
\(y – 1 = -2 (x – 1) ⇔ y = -2x + 3\)
\(y – 1 = 2 (x – 3) ⇔ y = 2x – 5\)
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK