Mệnh đề nào sau đây là mệnh đề đúng?
A. Một dãy số có giới hạn thì luôn luôn tăng hoặc luôn luôn giảm
B. Nếu \((u_n)\) là dãy số tăng thì \(\lim u_n= + ∞\)
C. Nếu \(\lim u_n= + ∞\) và \(\lim v_n= + ∞\) thì \(\lim (u_n– v_n) = 0\)
D. Nếu \(u_n= a^n\) và \(-1< a < 0\) thì \(\lim u_n=0\)
Xét tính đúng sai của từng đáp án.
Lời giải chi tiết
+) Câu A sai
“Một dãy số có giới hạn thì luôn luôn tăng hoặc luôn giảm” là mệnh đề sai.
Xét phần ví dụ sau:
Dãy số: \({u_n} = {{{{(-1)}^n}} \over n}\) có \(\lim {{{{( - 1)}^n}} \over n} = 0\)
Ta có: \({u_1} = - 1 < {u_2} = {1 \over 2},{u_2} = {1 \over 2} > {u_3} = - {1 \over 3}\)
\(⇒ \) Dãy số \(u_n\) không tăng cũng không giảm.
+) Câu B sai
“Nếu \((u_n)\) là dãy số tăng thì \(\lim(u_n) = + ∞\)” là mệnh đề sai, chẳng hạn: Dãy số \((u_n)\) với \({u_n} = 1 - {1 \over n}\)
Xét hiệu: \({u_{n + 1}} - {u_n} = (1 - {1 \over {n + 1}}) - (1 - {1 \over n}) = {1 \over n} - {1 \over {n + 1}} \) \(= {1 \over {n(n + 1)}} > 0\)
\(⇒ (u_n)\) là dãy số tăng.
\({{\mathop{\rm limu}\nolimits} _n} = \lim (1 - {1 \over n}) = 1\)
+) Câu C sai, xem phần ví dụ sau:
Hai dãy số \({u_n} = {{{n^2}} \over {n + 2}},{v_n} = n + 1\)
+ \({{\mathop{\rm limu}\nolimits} _n} = \lim {{{n^2}} \over {n + 2}} = \lim {{{n^2}} \over {{n^2}({1 \over n} + {1 \over {{n^2}}})}} = \lim {1 \over {{1 \over n} + {2 \over {n2}}}} = + \infty \)
+ \(\lim {v_n} = \lim (n + 1) = + \infty \)
+ Nhưng :
\(\eqalign{
& \lim ({u_n} - {v_n}) = \lim \left[ {{{{n^2}} \over {n + 2}} - (n + 1)} \right]\cr& = \lim {{ - 3n - 2} \over {n + 2}} = \lim {{n( - 3 - {2 \over n})} \over {n(1 + {2 \over n})}}\cr& = \lim {{ - 3 - {2 \over n}} \over {1 + {2 \over n}}} = - 3 \ne 0 \cr} \)
+) Câu D đúng vì \(\lim q^n= 0\) khi \(|q| <1\). Do đó: \(-1 < a < 0\) thì \(\lim a^n= 0\)
Chọn đáp án D.
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK