Cho phương trình: \(-4x^3+ 4x – 1 = 0\) (1)
Mệnh đề sai là:
A. Hàm số \(f(x) = -4x^3+ 4x – 1\) liên tục trên \(\mathbb R\)
B. Phương trình (1) không có nghiệm trên khoảng \((-∞, 1)\)
C. Phương trình (1) có nghiệm trên khoảng \((-2, 0)\)
D. Phương trình (1) có ít nhất hai nghiệm trên khoảng \(( - 3,{1 \over 2})\)
Hàm số \(y = f\left( x \right)\) liên tục trên \(\left( {a;b} \right)\) và có \(f\left( a \right).f\left( b \right) < 0\). Khi đó phương trình \(f\left( x \right) = 0\) có ít nhất 1 nghiệm \({x_0} \in \left( {a;b} \right)\)
Lời giải chi tiết
_ Mệnh đề A đúng vì \(f(x)\) là hàm số đa thức nên liên tục trên \(\mathbb R\).
_ Mệnh đề B sai vì:
+ Xét hàm số \(f(x) = -4x^3+ 4x – 1\), ta có \(f(1) = -1; f(-2) = 23 \Rightarrow f(1).f(-2) = -23 < 0\)
+ Ta lại có hàm số \(f(x)\) liên tục trên \((-2, 1)\) nên phương trình có ít nhất một nghiệm \(x_0 ∈ (-2, 1)\)
Do đó, phương trình \(-4x^3+ 4x – 1 = 0\) có nghiệm trên \((-∞, 1)\)
Chọn đáp án B.
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK