Bài 11 trang 143 SGK Đại số và Giải tích 11

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Cho dãy số \((u_n)\) với : \(u_n = \sqrt 2 + (\sqrt2)^2+......+( \sqrt 2)^n\)

Chọn mệnh đề đúng trong các mệnh đề sau:

A. \(\lim {u_n} = \sqrt 2  + {(\sqrt 2 )^2} + ... + {(\sqrt 2 )^n} = {{\sqrt 2 } \over {1 - \sqrt 2 }}\)

B. \(\lim u_n = -∞\)

C. \(\lim u_n= +∞\)

D. Dãy số \((u_n)\) không có giới hạn khi \(n \rightarrow +∞\)

Hướng dẫn giải

\((u_n)\) là tổng \(n\) số hạng đầu tiên của một cấp số nhân có số hạng đầu là \(u_1= \sqrt 2\) và công bội \(q = \sqrt 2\)

Lời giải chi tiết

+ Ta có \((u_n)\) là tổng \(n\) số hạng đầu tiên của một cấp số nhân có số hạng đầu là \(u_1= \sqrt 2\) và công bội \(q = \sqrt 2\) nên:

\(\eqalign{
& {u_n} = {{{u_1}(1 - {q_n})} \over {1 - q}} = {{\sqrt 2 \left[ {1 - {{(\sqrt 2 )}^n}} \right]} \over {1 - \sqrt 2 }}\cr&\;\;\;\;\;\; = {{\sqrt 2 \left[ {{{(\sqrt 2 )}^n} - 1} \right]} \over {\sqrt 2 - 1}} \cr
& \Rightarrow \lim {u_n} = \lim {{\sqrt 2 \left[ {{{(\sqrt 2 )}^n} - 1} \right]} \over {\sqrt 2 - 1}} = + \infty \cr} \)

(vì \(\sqrt 2 > 1\) nên \(\lim(\sqrt 2)^n= + ∞\).

Chọn đáp án C.

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK