Để trang hoàng cho căn hộ của mình, chú chuột Mickey quyết định tô màu một miếng bìa hình vuông cạnh bằng \(1\). Nó tô màu xám các hình vuông nhỏ được đánh dấu \(1, 2, 3, ..., n, ...\) trong đó cạnh của hình vuông kế tiếp bằng một nửa cạnh hình vuông trước đó (h.51)
Giả sử quy trình tô màu của Mickey có thể tiến ra vô hạn.
a) Gọi \(u_n\) là diện tích của hình vuông màu xám thứ \(n\). Tính \(u_1, u_2, u_3\) và \(u_n\).
b) Tính \(\lim S_n\) với \(S_n= {u_{1}} + {u_{2}} + {u_{3}} + ... + {u_{n}}\)
a) Tính diện tích của hình vuông \(S=a^2\) với \(a\) là cạnh của hình vuông.
b) Sử dụng công thức tổng của cấp số nhân lùi vô hạn \(S = \frac{{{u_1}}}{{1 - q}}\,\,\left( {\left| q \right| < 1} \right)\).
Lời giải chi tiết
a) Hình vuông thứ nhất có cạnh bằng \(\frac{1}{2}\) nên \({u_1} = {\left( {\frac{1}{2}} \right)^2} = \frac{1}{4}\).
Hình vuông thứ hai có cạnh bằng \(\frac{1}{4}\) nên \({u_2} = {\left( {{1 \over 4}} \right)^2} = {1 \over {{4^2}}}\).
Hình vuông thứ ba có cạnh bằng \(\frac{1}{8}\) nên \({u_3} = {\left( {{1 \over 8}} \right)^2} = {1 \over {{4^3}}}\)
Tương tự, ta có \(u_n=\frac{1}{4^{n}}\)
b) Dãy số \((u_n)\) là một cặp số nhân lùi vô hạn với \(u_1=\frac{1}{4}\) và \(q = \frac{1}{4}\). Do đó
\(\lim S_n=\frac{u_{1}}{1-q}= \frac{\frac{1}{4}}{1-\frac{1}{4}}=\frac{1}{3}\).
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK