Có \(1 kg\) chất phóng xạ độc hại. Biết rằng, cứ sau một khoảng thời gian \(T = 24 000\) năm thì một nửa số chất phóng xạ này bị phân rã thành chất khác không độc hại đối với sức khỏe của con người (\(T\) được gọi là chu kì bán rã).
Gọi \((u_n)\) là khối lượng chất phóng xạ còn sót lại sau chu kì thứ \(n\).
a) Tìm số hạng tổng quát \(u_n\) của dãy số \((u_n)\).
b) Chứng minh rằng \((u_n)\) có giới hạn là \(0\).
c) Từ kết quả câu b), chứng tỏ rằng sau một số năm nào đó khối lượng chất phóng xạ đã cho ban đầu không còn độc hại đối với con người, cho biết chất phóng xạ này sẽ không độc hại nữa nếu khối lượng chất phóng xạ còn lại bé hơn \(10^{-6}g\).
a) Tính \(u_1;u_2;u_3;...\), từ quy luật đó dự đoán công thức của \(u_n\) và chứng minh công thức đó bằng phương pháp quy nạp toán học.
b) Tính lim\({u_n}\).
c) Chất phóng xạ sẽ không còn độc hại nếu \({u_n} < {10^{ - 6}};\) tìm n.
Lời giải chi tiết
a) Ta có: \(u_1=\frac{1}{2}\); \(u_2= \frac{1}{4}\); \(u_3=\frac{1}{8}\); ... .
Từ đó ta dự đoán công thức \(u_n=\frac{1}{2^{n}}\) \(\forall n \ge 1\).
Điều này chứng minh đơn giản bằng quy nạp.
Hiển nhiên công thức trên đúng với \(n=1\).
Giả sử công thức đúng với mọi \(k \ge 1\), tức là có \(u_k=\frac {1} {2^k}\), ta chứng minh công thức đó đúng với mọi \(n=k+1\), tức là cần chứng minh: \(u_{k+1}=\frac {1} {2^{k+1}}\).
Ta có \({u_{k + 1}} = \frac{{{u_k}}}{2} = \frac{1}{{{2^k}}}:2 = \frac{1}{{{2^k}}}.\frac{1}{2} = \frac{1}{{{2^{k + 1}}}}\).
Vậy \({u_n} = \frac{1}{{{2^n}}}\,\,\forall n \in {N^*}\).
b) \(\lim {u_n} = \lim {\left( {{1 \over 2}} \right)^n} = 0\).
c) Đổi \(10^{-6}g = \frac{1}{10^{6}} . \frac{1}{10^{3}}kg = \frac{1}{10^{9}} kg\).
Để chất phóng xạ sẽ không còn độc hại, ta cần tìm n để \({u_n} = \frac{1}{{{2^n}}} < \frac{1}{{{{10}^9}}} \Leftrightarrow {2^n} > {10^9} \Leftrightarrow n \ge 30\).
Nói cách khác, sau chu kì thứ \(30\) (nghĩa là sau \(30.24000 = 720000\) (năm)), chúng ta không còn lo lắng về sự độc hại của khối lượng chất phóng xạ còn lại.
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK