Trong các dãy số sau, dãy số nào bị chặn dưới, dãy số nào bị chặn trên, dãy số nào bị chặn?
a) \(u_n= 2n^2-1\); b) \( u_n=\frac{1}{n(n+2)}\)
Dãy số \(\left( {{u_n}} \right)\) được gọi là bị chặn trên nếu tồn tại một số M sao cho \({u_n} \le M\,\,\forall n \in N*\).
Dãy số \(\left( {{u_n}} \right)\) được gọi là bị chặn dưới nếu tồn tại một số m sao cho \({u_n} \ge m\,\,\forall n \in N*\).
Dãy số \(\left( {{u_n}} \right)\) được gọi là bị chặn nếu nó vừa bị chặn trên vừa bị chặn dưới, tức là tồn tại các số m, M sao cho \(m \le {u_n} \le M\,\,\forall n \in N*\).
Lời giải chi tiết
a) Dãy số bị chặn dưới vì \(u_n= 2n^2-1≥ 1\) với mọi \(n \in {\mathbb N}^*\) và không bị chặn trên vì:
Với số \(M\) dương lớn bất kì, ta có \(2n^2-1 > M \Leftrightarrow n > \sqrt{\frac{M+1}{2}}\), tức là luôn tồn tại \( n ≥ \left [ \sqrt{\frac{M+1}{2}} \right ] + 1\) để \(2 n^{2}- 1 > M\)
\(\begin{array}{l}
\left\{ \begin{array}{l}
n \ge 1 \Rightarrow {n^2} \ge 1\\
2n \ge 2
\end{array} \right.\\ \Rightarrow n\left( {n + 2} \right) = {n^2} + 2n \ge 1 + 2 = 3\\
\Rightarrow \frac{1}{{n\left( {n + 2} \right)}} \le \frac{1}{3} \Rightarrow {u_n} \le \frac{1}{3}\,\,\forall n \in N^*.
\end{array}\)
\(\begin{array}{l}
{n^2} \ge 1 \Leftrightarrow 2{n^2} \ge 2 \Leftrightarrow 2{n^2} - 1 \ge 1 > 0\\
\Rightarrow 0 < \frac{1}{{2{n^2} - 1}} \le 1\,\,\,\forall n \in N^*
\end{array}\)
\(\begin{array}{l}
\sin n + \cos n = \sqrt 2 \left( {\frac{1}{{\sqrt 2 }}\sin n + \frac{1}{{\sqrt 2 }}\cos n} \right) \\= \sqrt 2 \sin \left( {n + \frac{\pi }{4}} \right)\\
\Rightarrow - \sqrt 2 \le \sin n + \cos n \le \sqrt 2 \,\,\forall n \in {N^*}
\end{array}\)
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK