Trang chủ Lớp 11 Toán Lớp 11 SGK Cũ Bài 2. Dãy số Bài 5 trang 92 SGK Đại số và Giải tích 11

Bài 5 trang 92 SGK Đại số và Giải tích 11

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Trong các dãy số sau, dãy số nào bị chặn dưới, dãy số nào bị chặn trên, dãy số nào bị chặn?

a) \(u_n= 2n^2-1\);                     b) \( u_n=\frac{1}{n(n+2)}\)

Hướng dẫn giải

Dãy số \(\left( {{u_n}} \right)\) được gọi là bị chặn trên nếu tồn tại một số M sao cho \({u_n} \le M\,\,\forall n \in N*\).

Dãy số \(\left( {{u_n}} \right)\) được gọi là bị chặn dưới  nếu tồn tại một số m sao cho \({u_n} \ge m\,\,\forall n \in N*\).

Dãy số \(\left( {{u_n}} \right)\) được gọi là bị chặn nếu nó vừa bị chặn trên vừa bị chặn dưới, tức là tồn tại các số m, M sao cho \(m \le {u_n} \le M\,\,\forall n \in N*\).

Lời giải chi tiết

a) Dãy số bị chặn dưới vì \(u_n= 2n^2-1≥ 1\) với mọi \(n \in {\mathbb N}^*\)  và không bị chặn trên vì:

Với số \(M\) dương lớn bất kì, ta có \(2n^2-1 > M \Leftrightarrow n > \sqrt{\frac{M+1}{2}}\), tức là luôn tồn tại \( n ≥   \left [ \sqrt{\frac{M+1}{2}} \right ] + 1\) để  \(2 n^{2}- 1 > M\)

\(\begin{array}{l}
\left\{ \begin{array}{l}
n \ge 1 \Rightarrow {n^2} \ge 1\\
2n \ge 2
\end{array} \right.\\ \Rightarrow n\left( {n + 2} \right) = {n^2} + 2n \ge 1 + 2 = 3\\
\Rightarrow \frac{1}{{n\left( {n + 2} \right)}} \le \frac{1}{3} \Rightarrow {u_n} \le \frac{1}{3}\,\,\forall n \in N^*.
\end{array}\)

\(\begin{array}{l}
{n^2} \ge 1 \Leftrightarrow 2{n^2} \ge 2 \Leftrightarrow 2{n^2} - 1 \ge 1 > 0\\
\Rightarrow 0 < \frac{1}{{2{n^2} - 1}} \le 1\,\,\,\forall n \in N^*
\end{array}\)

\(\begin{array}{l}
\sin n + \cos n = \sqrt 2 \left( {\frac{1}{{\sqrt 2 }}\sin n + \frac{1}{{\sqrt 2 }}\cos n} \right) \\= \sqrt 2 \sin \left( {n + \frac{\pi }{4}} \right)\\
\Rightarrow - \sqrt 2 \le \sin n + \cos n \le \sqrt 2 \,\,\forall n \in {N^*}
\end{array}\)

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK