Cho một lục giác đều \(ABCDEF\). Viết các chữ cái \(ABCDEF\) vào \(6\) cái thẻ. Lấy ngẫu nhiên hai thẻ. Tìm xác suất sao cho đoạn thẳng mà các đầu mút là các điểm được ghi trên hai thẻ đó là:
a) Các cạnh của lục giác
b) Đường chéo của lục giác
c) Đường chéo nối hai đỉnh đối diện của lục giác.
Tính số phần tử của không gian mẫu \(n\left( \Omega \right)\).
Tính số phần tử củ biến cố A: \(n\left( A \right)\).
Tính xác suất của biến cố A: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}}\).
Lời giải chi tiết
Không gian mẫu là số các tổ hợp chập \(2\) của \(6\) (đỉnh)
Do đó: \(n(\Omega ) = C_6^2 = 15\)
Gọi \(A, B, C\) là ba biến cố cần tìm xác suất tương ứng với câu \(a, b, c\).
a) Vì số cạnh của đa giác là \(6\) nên \(n(A) = 6\)
\(\Rightarrow P( A) = {6 \over {15}} = {2 \over 5}\)
b) Vì số đường chéo của lục giác là số đoạn thẳng nối \(2\) đỉnh của lục giác trừ đi số cạnh của lục giác \(\Rightarrow n(B) = 15 – 6 = 9\)
Vậy: \(P(B) = {9 \over {15}} = {3 \over 5}\)
c) Lục giác có \(3\) cặp đỉnh đối diện nên \(n(C) = 3\)
Vậy \(P(C) = {{n(C)} \over {n(\Omega )}} = {3 \over {15}} = {1 \over 5}\)
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK