Bài 4 trang 76 SGK Đại số và Giải tích 11

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Có bao nhiêu số chẵn có \(4\) chữ số được tạo thành từ các số \(0, 1, 2, 3, 4, 5, 6\) sao cho:

a) Các chữ số có thể giống nhau

b) Các chữ số khác nhau.

Hướng dẫn giải

Sử dụng linh hoạt các quy tắc đếm.

Lời giải chi tiết

Tập hợp \(A = \left\{{0, 1, 2, 3, 4, 5, 6}\right\}\)

a) Gọi số có \(4\) chữ số tạo thành là \(\overline {abcd} \)

Ta có: \(\overline {abcd} \) chẵn nên:

Số 

\(\overline {abcd} \left\{ \matrix{
a,b,c,d \in A \hfill \cr
a \ne 0 \hfill \cr
d \in \left\{ {0,2,4,6} \right\} \hfill \cr} \right.\)

+) Có \(4\) cách để chọn \(d\)

+) \(a ≠ 0\) ⇒ có \(6\) cách chọn \(a\)

+) Có \(7\) cách chọn \(b\) và \(7\) cách chọn \(c\)

Vậy : \(4.6.7.7 = 1176\) số chẵn \(\overline {abcd} \) trong đó, các chữ số có thể giống nhau

b) Gọi \(\overline {abcd} \)  là số cần tìm 

Trường hợp 1: \(\overline {abc0} (d = 0)\)

Vì \(a, b, c\) đôi một khác nhau và khác \(d\) nên có \(A_6^3\) số \(\overline {abc0} \)

Vậy có \(A_6^3\) số \(\overline {abc0} \)

Trường hợp 2:  \(\overline {abcd} \) (với \(d ≠ 0\))

+) \(d ∈ \left\{{2, 4, 6}\right\}\) \(⇒\) có \(3\) cách chọn \(d\)

+) \(a ≠ 0, a ≠ d\) nên có \(5\) cách chọn \(a\)

+)  \(b ≠ a, b ≠ d\) nên có \(5\) cách chọn \(b\)

+) \(c ≠ a, b, d\) nên có \(4\) cách chọn \(c\)

\(⇒\) Có \(3. 5. 5. 4 = 300\) số  \(\overline {abcd} \) loại 2

Vậy có: \(A_6^3 + 300 = 420\) số  \(\overline {abcd} \) thỏa mãn yêu cầu của đề bài.

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK