Xếp ngẫu nhiên ba bạn nam và ba bạn nữ ngồi vào sáu ghế kê theo hàng ngang. Tìm xác suất sao cho:
a) Nam, nữ ngồi xen kẽ nhau
b) Ba bạn nam ngồi cạnh nhau
a) Đánh số thứ tự ghế và chọn ghế sao cho nam, nữ ngồi xen kẽ nhau.
b) Sử dụng quy tắc buộc, buộc ba bạn nam lại và coi đó là 1 phần tử.
Lời giải chi tiết
Số cách xếp \(3\) nam và \(3\) nữ vào \(6\) ghế là \(6!\) Cách.
Suy ra: \(n(\Omega ) = 6! = 720\)
a) Ta gọi \(A\) là biến cố : “Nam, nữ ngồi xen kẽ nhau”
Ta đánh số ghế như sau:
1
2
3
4
5
6
1
2
3
4
5
6
Trường hợp 1:
+ Nam ngồi ghế số \(1, 3, 5\) suy ra có \(3!\) cách xếp
+ Nữ ngồi ghế số \(2, 4, 6\) suy ra có \(3!\) cách xếp
Suy ra trường hợp 1 có \(3!.3! = 36\) cách xếp
Trường hợp 2:
+ Nữ ngồi ghế số \(1, 3, 5\) suy ra có \(3!\) cách xếp
+ Nam ngồi ghế số \(2, 4, 6\) suy ra có \(3!\) cách xếp
Suy ra trường hợp 1 có \(3!.3! = 36\) cách xếp
Suy ra:
\(N(A) = 3!.3! + 3!.3! = 36 + 36 = 72\) cách xếp.
Vậy \(P(A) = {{n(A)} \over {n(\Omega )}} = {{72} \over {720}} = {1 \over {10}} = 0,1\)
b) Gọi biến cố \(B\): “Ba bạn nam ngồi cạnh nhau”
Xem \(3\) bạn nam như một phần tử \(N\) và \(N\) cùng \(3\) bạn nữ được xem như ngồi vào \(4\) ghế được đánh số như sau:
1
2
3
4
1
2
3
4
_ Số cách xếp \(N\) và \(3\) nữ vào \(4\) ghế là \(4!\)
_ Mỗi cách hoán vị \(3\) nam cho nhau trong cùng một vị trí ta có thêm \(3!\) cách xếp khác nhau.
Suy ra \(n(B) = 4!.3!=144\)
Vậy : \(P(B) = {{n(B)} \over {n(\Omega )}} = {{144} \over {720}} = {1 \over 5} = 0,2\)
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK